The stable marriage problem has a wide variety of practical applications,
ranging from matching resident doctors to hospitals, to matching students to
schools, or more generally to any two-sided market. We consider a useful
variation of the stable marriage problem, where the men and women express their
preferences using a preference list with ties over a subset of the members of
the other sex. Matchings are permitted only with people who appear in these
preference lists. In this setting, we study the problem of finding a stable
matching that marries as many people as possible. Stability is an envy-free
notion: no man and woman who are not married to each other would both prefer
each other to their partners or to being single. This problem is NP-hard. We
tackle this problem using local search, exploiting properties of the problem to
reduce the size of the neighborhood and to make local moves efficiently.
Experimental results show that this approach is able to solve large problems,
quickly returning stable matchings of large and often optimal size.Comment: 12 pages, Proc. PRICAI 2010 (11th Pacific Rim International
Conference on Artificial Intelligence), Byoung-Tak Zhang and Mehmet A. Orgun
eds., Springer LNA