124 research outputs found

    Deep MMT Transit Survey of the Open Cluster M37 IV: Limit on the Fraction of Stars With Planets as Small as 0.3 R_J

    Full text link
    We present the results of a deep (15 ~< r ~< 23), 20 night survey for transiting planets in the intermediate age open cluster M37 (NGC 2099) using the Megacam wide-field mosaic CCD camera on the 6.5m MMT. We do not detect any transiting planets among the ~1450 observed cluster members. We do, however, identify a ~ 1 R_J candidate planet transiting a ~ 0.8 Msun Galactic field star with a period of 0.77 days. The source is faint (V = 19.85 mag) and has an expected velocity semi-amplitude of K ~ 220 m/s (M/M_J). We conduct Monte Carlo transit injection and recovery simulations to calculate the 95% confidence upper limit on the fraction of cluster members and field stars with planets as a function of planetary radius and orbital period. Assuming a uniform logarithmic distribution in orbital period, we find that < 1.1%, < 2.7% and < 8.3% of cluster members have 1.0 R_J planets within Extremely Hot Jupiter (EHJ, 0.4 < T < 1.0 day), Very Hot Jupiter (VHJ, 1.0 < T < 3.0 days) and Hot Jupiter (HJ, 3.0 < T < 5.0 days) period ranges respectively. For 0.5 R_J planets the limits are < 3.2%, and < 21% for EHJ and VHJ period ranges, while for 0.35 R_J planets we can only place an upper limit of < 25% on the EHJ period range. For a sample of 7814 Galactic field stars, consisting primarily of FGKM dwarfs, we place 95% upper limits of < 0.3%, < 0.8% and < 2.7% on the fraction of stars with 1.0 R_J EHJ, VHJ and HJ assuming the candidate planet is not genuine. If the candidate is genuine, the frequency of ~ 1.0 R_J planets in the EHJ period range is 0.002% < f_EHJ < 0.5% with 95% confidence. We place limits of < 1.4%, < 8.8% and < 47% for 0.5 R_J planets, and a limit of < 16% on 0.3 R_J planets in the EHJ period range. This is the first transit survey to place limits on the fraction of stars with planets as small as Neptune.Comment: 61 pages, 19 figures, 5 tables, replaced with the version accepted for publication in Ap

    Enabling multi-level relevance feedback on PubMed by integrating rank learning into DBMS

    Get PDF
    Background: Finding relevant articles from PubMed is challenging because it is hard to express the user&apos;s specific intention in the given query interface, and a keyword query typically retrieves a large number of results. Researchers have applied machine learning techniques to find relevant articles by ranking the articles according to the learned relevance function. However, the process of learning and ranking is usually done offline without integrated with the keyword queries, and the users have to provide a large amount of training documents to get a reasonable learning accuracy. This paper proposes a novel multi-level relevance feedback system for PubMed, called RefMed, which supports both ad-hoc keyword queries and a multi-level relevance feedback in real time on PubMed. Results: RefMed supports a multi-level relevance feedback by using the RankSVM as the learning method, and thus it achieves higher accuracy with less feedback. RefMed "tightly" integrates the RankSVM into RDBMS to support both keyword queries and the multi-level relevance feedback in real time; the tight coupling of the RankSVM and DBMS substantially improves the processing time. An efficient parameter selection method for the RankSVM is also proposed, which tunes the RankSVM parameter without performing validation. Thereby, RefMed achieves a high learning accuracy in real time without performing a validation process. RefMed is accessible at http://dm.postech.ac.kr/refmed. Conclusions: RefMed is the first multi-level relevance feedback system for PubMed, which achieves a high accuracy with less feedback. It effectively learns an accurate relevance function from the user&apos;s feedback and efficiently processes the function to return relevant articles in real time.1114Nsciescopu

    Automated Home-Cage Behavioural Phenotyping of Mice

    Get PDF
    Neurobehavioral analysis of mouse phenotypes requires the monitoring of mouse behavior over long periods of time. Here, we describe a trainable computer vision system enabling the automated analysis of complex mouse behaviors. We provide software and an extensive manually annotated video database used for training and testing the system. Our system performs on par with human scoring, as measured from ground-truth manual annotations of thousands of clips of freely behaving mice. As a validation of the system, we characterized the home-cage behaviors of two standard inbred and two non-standard mouse strains. From this data we were able to predict in a blind test the strain identity of individual animals with high accuracy. Our video-based software will complement existing sensor based automated approaches and enable an adaptable, comprehensive, high-throughput, fine-grained, automated analysis of mouse behavior.McGovern Institute for Brain ResearchCalifornia Institute of Technology. Broad Fellows Program in Brain CircuitryNational Science Council (China) (TMS-094-1-A032

    Web Mining for Web Personalization

    Get PDF
    Web personalization is the process of customizing a Web site to the needs of specific users, taking advantage of the knowledge acquired from the analysis of the user\u27s navigational behavior (usage data) in correlation with other information collected in the Web context, namely, structure, content, and user profile data. Due to the explosive growth of the Web, the domain of Web personalization has gained great momentum both in the research and commercial areas. In this article we present a survey of the use of Web mining for Web personalization. More specifically, we introduce the modules that comprise a Web personalization system, emphasizing the Web usage mining module. A review of the most common methods that are used as well as technical issues that occur is given, along with a brief overview of the most popular tools and applications available from software vendors. Moreover, the most important research initiatives in the Web usage mining and personalization areas are presented

    Notch signaling during human T cell development

    Get PDF
    Notch signaling is critical during multiple stages of T cell development in both mouse and human. Evidence has emerged in recent years that this pathway might regulate T-lineage differentiation differently between both species. Here, we review our current understanding of how Notch signaling is activated and used during human T cell development. First, we set the stage by describing the developmental steps that make up human T cell development before describing the expression profiles of Notch receptors, ligands, and target genes during this process. To delineate stage-specific roles for Notch signaling during human T cell development, we subsequently try to interpret the functional Notch studies that have been performed in light of these expression profiles and compare this to its suggested role in the mouse

    Incorporating rich background knowledge for gene named entity classification and recognition

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene named entity classification and recognition are crucial preliminary steps of text mining in biomedical literature. Machine learning based methods have been used in this area with great success. In most state-of-the-art systems, elaborately designed lexical features, such as words, n-grams, and morphology patterns, have played a central part. However, this type of feature tends to cause extreme sparseness in feature space. As a result, out-of-vocabulary (OOV) terms in the training data are not modeled well due to lack of information.</p> <p>Results</p> <p>We propose a general framework for gene named entity representation, called feature coupling generalization (FCG). The basic idea is to generate higher level features using term frequency and co-occurrence information of highly indicative features in huge amount of unlabeled data. We examine its performance in a named entity classification task, which is designed to remove non-gene entries in a large dictionary derived from online resources. The results show that new features generated by FCG outperform lexical features by 5.97 F-score and 10.85 for OOV terms. Also in this framework each extension yields significant improvements and the sparse lexical features can be transformed into both a lower dimensional and more informative representation. A forward maximum match method based on the refined dictionary produces an F-score of 86.2 on BioCreative 2 GM test set. Then we combined the dictionary with a conditional random field (CRF) based gene mention tagger, achieving an F-score of 89.05, which improves the performance of the CRF-based tagger by 4.46 with little impact on the efficiency of the recognition system. A demo of the NER system is available at <url>http://202.118.75.18:8080/bioner</url>.</p

    Predicting gene function using hierarchical multi-label decision tree ensembles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>S. cerevisiae</it>, <it>A. thaliana </it>and <it>M. musculus </it>are well-studied organisms in biology and the sequencing of their genomes was completed many years ago. It is still a challenge, however, to develop methods that assign biological functions to the ORFs in these genomes automatically. Different machine learning methods have been proposed to this end, but it remains unclear which method is to be preferred in terms of predictive performance, efficiency and usability.</p> <p>Results</p> <p>We study the use of decision tree based models for predicting the multiple functions of ORFs. First, we describe an algorithm for learning hierarchical multi-label decision trees. These can simultaneously predict all the functions of an ORF, while respecting a given hierarchy of gene functions (such as FunCat or GO). We present new results obtained with this algorithm, showing that the trees found by it exhibit clearly better predictive performance than the trees found by previously described methods. Nevertheless, the predictive performance of individual trees is lower than that of some recently proposed statistical learning methods. We show that ensembles of such trees are more accurate than single trees and are competitive with state-of-the-art statistical learning and functional linkage methods. Moreover, the ensemble method is computationally efficient and easy to use.</p> <p>Conclusions</p> <p>Our results suggest that decision tree based methods are a state-of-the-art, efficient and easy-to-use approach to ORF function prediction.</p

    Risk Assessment of Gastric Cancer Caused by Helicobacter pylori Using CagA Sequence Markers

    Get PDF
    As a marker of Helicobacter pylori, Cytotoxin-associated gene A (cagA) has been revealed to be the major virulence factor causing gastroduodenal diseases. However, the molecular mechanisms that underlie the development of different gastroduodenal diseases caused by cagA-positive H. pylori infection remain unknown. Current studies are limited to the evaluation of the correlation between diseases and the number of Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs in the CagA strain. To further understand the relationship between CagA sequence and its virulence to gastric cancer, we proposed a systematic entropy-based approach to identify the cancer-related residues in the intervening regions of CagA and employed a supervised machine learning method for cancer and non-cancer cases classification.An entropy-based calculation was used to detect key residues of CagA intervening sequences as the gastric cancer biomarker. For each residue, both combinatorial entropy and background entropy were calculated, and the entropy difference was used as the criterion for feature residue selection. The feature values were then fed into Support Vector Machines (SVM) with the Radial Basis Function (RBF) kernel, and two parameters were tuned to obtain the optimal F value by using grid search. Two other popular sequence classification methods, the BLAST and HMMER, were also applied to the same data for comparison.Our method achieved 76% and 71% classification accuracy for Western and East Asian subtypes, respectively, which performed significantly better than BLAST and HMMER. This research indicates that small variations of amino acids in those important residues might lead to the virulence variance of CagA strains resulting in different gastroduodenal diseases. This study provides not only a useful tool to predict the correlation between the novel CagA strain and diseases, but also a general new framework for detecting biological sequence biomarkers in population studies

    svmPRAT: SVM-based Protein Residue Annotation Toolkit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last decade several prediction methods have been developed for determining the structural and functional properties of individual protein residues using sequence and sequence-derived information. Most of these methods are based on support vector machines as they provide accurate and generalizable prediction models.</p> <p>Results</p> <p>We present a general purpose protein residue annotation toolkit (<it>svm</it><monospace>PRAT</monospace>) to allow biologists to formulate residue-wise prediction problems. <it>svm</it><monospace>PRAT</monospace> formulates the annotation problem as a classification or regression problem using support vector machines. One of the key features of <it>svm</it><monospace>PRAT</monospace> is its ease of use in incorporating any user-provided information in the form of feature matrices. For every residue <it>svm</it><monospace>PRAT</monospace> captures local information around the reside to create fixed length feature vectors. <it>svm</it><monospace>PRAT</monospace> implements accurate and fast kernel functions, and also introduces a flexible window-based encoding scheme that accurately captures signals and pattern for training effective predictive models.</p> <p>Conclusions</p> <p>In this work we evaluate <it>svm</it><monospace>PRAT</monospace> on several classification and regression problems including disorder prediction, residue-wise contact order estimation, DNA-binding site prediction, and local structure alphabet prediction. <it>svm</it><monospace>PRAT</monospace> has also been used for the development of state-of-the-art transmembrane helix prediction method called TOPTMH, and secondary structure prediction method called YASSPP. This toolkit developed provides practitioners an efficient and easy-to-use tool for a wide variety of annotation problems.</p> <p><it>Availability</it>: <url>http://www.cs.gmu.edu/~mlbio/svmprat</url></p
    corecore