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A BST R A C T 

Neurobehavioral analysis of mouse phenotypes requires the monitoring of mouse behavior over long 

periods of time. Here, we describe a trainable computer vision system enabling the automated analysis 

of complex mouse behaviors. We provide software and an extensive manually annotated video 

database used for training and testing the system. Our system performs on par with human scoring, as 

measured from ground-truth manual annotations of thousands of clips of freely behaving mice. As a 

validation of the system, we characterized the home-cage behaviors of two standard inbred and two 

non-standard mouse strains. From this data we were able to predict in a blind test the strain identity of 

individual animals with high accuracy. Our video-based software will complement existing sensor 

based automated approaches and enable an adaptable, comprehensive, high-throughput, fine-grained, 

automated analysis of mouse behavior.  
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IN T R O DU C T I O N 

Automated quantitative analysis of mouse behavior will play a significant role in comprehensive 

phenotypic analyses  both on the small scale of detailed characterization of individual gene mutants 

and on the large scale of assigning gene function across the entire mouse genome1. One key benefit of 

automating behavioral analysis arises from inherent limitations of human assessment: namely cost, 

time, and reproducibility. Although automation in and of itself is not a panacea for neurobehavioral 

experiments2, it allows for addressing an entirely new set of questions about mouse behavior and to 

conduct experiments on time scales that are orders of magnitude larger than traditionally assayed. For 

example, reported tests of grooming behavior span time scales of minutes3, 4 whereas an automated 

analysis will allow for analysis of this behavior over hours or even days and weeks. 

Indeed, the significance of alterations in home-cage behavior has recently gained attention as an 

effective means to detect perturbations in neural circuit function  both in the context of disease 

detection and more generally to measure food consumption and activity parameters5-10. Previous 

automated systems (e.g., ref.8, 9, 11, 12 and Supplementary Note) rely mostly on the use of simple 

detectors such as infrared beams to monitor behavior. These sensor-based approaches tend to be 

limited in the complexity of the behavior that they can measure, even in the case of costly commercial 

systems using transponder technologies13. While such systems can be used effectively to monitor 

locomotor activity and perform operant conditioning, they cannot be used to study home-cage 

behaviors such as grooming, hanging, jumping, micro-

below). Visual analysis is a potentially powerful complement to these sensor-based approaches for the 

recognition of such fine animal behaviors.  

Advances in computer vision and machine learning over the last decade have yielded robust computer 

vision systems for the recognition of objects14, 15 and human actions (see ref. 16 for review). In fact, the 

use of vision-based approaches is already bearing fruit for the automated tracking17-19 and recognition 

of behaviors in insects20, 21. Several open-source and commercial computer-vision systems for the 

recognition of mouse behavior have also been developed (see ref. 22, 23 and Supplementary Note). 

However, these systems are not widely used, exhibit similar limitations to sensor-based approaches, or 

are cost prohibitive.  

In this paper, we describe a trainable, general-purpose, automated and potentially high-throughput 

system for the behavioral analysis of mice in their home-cage. Developed from a computational model 

of motion processing in the primate visual cortex24, 25, the computer system is trained with labeled 
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examples with manually annotated behaviors of interest and used to analyze automatically new 

recordings containing hours of freely behaving animals. As a proof of concept, we trained the system 

on common mouse behaviors and demonstrate that the resulting system performs on par with humans 

for the scoring of these behaviors. Using the resulting system, we analyze the home-cage behavior of 

several mouse strains, including the commonly used strains C57BL/6J, DBA/2J, the BTBR strain that 

displays autistic-like behaviors, and a wild-derived strain CAST/EiJ. We characterize differences in the 

behaviors of these strains and use these profiles to predict the strain type of an animal. 

 

R ESU L TS 

Our system (available as Supplementary Software) consists of three separate modules: (1) a video 

database, (2) a feature computation module, and (3) a classification module.  

 

V ideo database  

We video-recorded a large database of video sequences of singly housed mice in their home-cages 

from an angle perpendicular to the side of the cage (see Fig. 1 for examples of video frames) using a 

consumer grade camcorder. In order to create a robust recognition system we varied the lighting 

conditions by placing the cage in different positions with respect to the overhead lighting. In addition, 

we used many mice of different size, gender, and coat color. We considered eight behaviors of interest, 

which included: drinking, eating, grooming, hanging, rearing, walking, resting, and micro-movements 

of the head. Several investigators were trained to score the mouse behavior using two different scoring 

techniques.  

The first set of annotations denoted the  included only clips scored with very high 

stringency, seeking to annotate only the best and most exemplary instances of particular behaviors. A 

pool of eight annotators ( ) manually hand-scored more than 9,000 short clips, each 

containing a unique annotation. To avoid errors, this database was then curated by one of the 

annotators who watched all 9,000 clips again, retaining only the most unambiguous assessments, 

leaving 4,200 clips (26,2360 frames corresponding to about 2.5 hours) from twelve distinct videos 

(recorded at twelve separate sessions) to train and tune the feature computation module of the proposed 

system, as described below.  



 

 4 

The second set of annotations, called the  involved labeling every frame (with less 

stringency than in the clipped ) for twelve unique videos (different from the twelve videos 

used in the ) corresponding to over 10 hours of continuously annotated video.  

Again two sets of annotators were used to correct mistakes and make sure the annotation style was 

consistent throughout the whole database. This database was used to train and test the classification 

module of the computer system.  The distribution of behavior labels for the clipped  and the 

full  is shown in Supplementary Fig. S1a-b and Supplementary Fig. S1c-d respectively.  

 

Computation and evaluation of motion and position features 

The architecture used here to pre-process raw video sequences (Fig. 2a-b) and extract motion features 

(Fig. 2c) is adapted from previous work for the recognition of human actions and biological motion25. 

To speed up the system, the computation of the motion features was limited to a sub-window centered 

on the animal (Fig. 2b), whose location can be computed from the foreground pixels obtained by 

subtracting off the video background (Fig. 2a). For a static camera as used here, the video background 

can be well approximated by a median frame in which each pixel value corresponds to the median 

gray-value computed over all frames for that pixel location (day and night frames under red lights were 

processed in separate videos). 

The computation of motion features is based on the organization of the dorsal stream of the visual 

cortex, which has been linked to the processing of motion information (see ref.26 for a recent review.) 

Details about the implementation are provided in the Supplementary Methods. A hallmark of the 

system is its hierarchical architecture: The first processing stage corresponds to an array of spatio-

temporal filters tuned to four different directions of motion and modeled after motion-sensitive 

(simple) cells in the primary visual cortex (V1)27 (S1/C1 layers, Fig. 2d). The architecture then extracts 

space-time motion features centered at every frame of an input video sequence via a multiple 

processing stages, whereby features become increasingly complex and invariant with respect to 2D 

transformations as one moves up the hierarchy. These motion features are obtained by combining the 

response of V1-like afferent motion units that are tuned to different directions of motion (Fig. 2e, also 

see Supplementary Methods for details).  

The output of this hierarchical pre-processing module consists of a dictionary of about 300 space-time 

motion features (S2/C2 layers, Fig. 2e) that are obtained by matching the output of the S1/C1 layers 

with a dictionary of motion-feature templates. This basic dictionary of motion-feature templates 
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corresponds to discriminative motion features that are learned from a training set of videos containing 

labeled behaviors of interest (the ), via a feature selection technique. 

To optimize the performance of the system for the recognition of mouse behaviors, several key 

parameters of the model were adjusted. The parameters of the spatio-temporal filters in the first stage 

(e.g., their preferred speed tuning and direction of motion, the nature of the non-linear transfer function 

used, the video resolution, etc) were adjusted so as to maximize performance on the 

.  

In order to evaluate the quality of these motion features for the recognition of high-quality 

unambiguous behaviors we trained and tested a multi-class Support Vector Machine (SVM) on single 

isolated frames from the clipped  using the all-pair multi-class classification strategy. This 

approach does not rely on the temporal context of measured behaviors beyond the computation of low-

level motion signals and classifies each frame independently. On the clipped , we find that 

such a system leads to 93% accuracy (as the percentage of correctly predicted clips, chance level 

12.5% for 8-class classification), which is significantly higher than the performance of a representative 

computer vision system23 (81%) trained and tested in the same conditions (see Supplementary 

Methods). Performance was estimated based on a leave-one-video-out procedure, whereby clips from 

all except one video are used to train the system while performance is evaluated on the clips from the 

remaining video. The procedure was repeated for all videos; we report the overall accuracy. This 

suggests that the representation provided by the dictionary of motion-feature templates is suitable for 

the recognition of the behaviors of interest even under conditions where the global temporal structure 

(i.e., the temporal structure beyond the computation of low-level motion signals) of the underlying 

temporal sequence is discarded. 

In addition to the motion features described above, we computed an additional set of features derived 

from the instantaneous location of the animal in the cage (Fig. 2f). Position- and velocity-based 

measurements were estimated based on the 2D coordinates  (x, y) of the foreground pixels (Fig. 2a) for 

every frame. These included the position and the aspect ratio of the bounding box around the animal 

(indicating whether the animal is in a horizontal or vertical posture), the distance of the animal to the 

feeder as well as its instantaneous velocity and acceleration. Fig. 2f illustrates some of the key features 

used  (see Supplementary Table S1 for a complete list). 
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Classification module 

The reliable phenotyping of an animal requires more than the mere detection of stereotypical non-

ambiguous behaviors. In particular, the present system aims at classifying every frame of a video 

sequence even for those frames that are ambiguous and difficult to categorize. For this challenging 

task, the temporal context of a specific behavior becomes an essential source of information; thus, 

learning an accurate temporal model for the recognition of actions becomes critical (see Supplementary 

Fig. S2 for an illustration). Here we used a Hidden Markov Support Vector Machine (SVMHMM, Fig. 

2g)28, 29, which is an extension of the Support Vector Machine classifier for sequence tagging. This 

temporal model was trained on the full  as described above, which contains manually 

labeled examples of about 10 hours of continuously scored video sequences from twelve distinct 

videos.  

Assessing the accuracy of the system is a critical task. Therefore, we made two comparisons: 1) 

between the resulting system and commercial software (HomeCageScan 2.0, CleverSys, Inc) for 

mouse home-cage behavior classification and 2) between the system and human annotators. The level 

of agreement between human annotators sets a benchmark for the system performance since the system 

relies entirely on human annotations to learn to recognize behaviors. In order to evaluate the agreement 

between two sets of labelers, we asked a set of four ) 

 to annotate a subset of the full . This subset (denoted 

) corresponds to many short random segments from the full ; each segment is about 5-

10 min in length and they add up to a total of 1.6 hours of annotated video. Supplementary Fig. S1d 

shows the corresponding distribution of labels for  and confirms that  is representative of 

the full database  (Supplementary Fig. S1c).   

Performance was estimated using a leave-one-video-out procedure, whereby all but one of the videos 

was used to train the system while performance was evaluated on the remaining video. The procedure 

was repeated n=12 times for all videos and the performance. We found that our system achieves 76.6% 

agreement with human labelers on set  (averaged across frames), a result substantially higher than 

the HomeCageScan 2.0 (60.9%) system and on par with humans (71.6%), as shown in Table 1. For all 

of the comparisons above, the annotations made by the Annotator group 1  were used as ground truth 

to train and test the system because these annotations underwent a second screening and were therefore 

more accurate than the annotations made by the  . The second set of annotations 

made by the Annotator group 2  on  was only used for measuring the agreement between 

independent human annotators. It is therefore 
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than the second group of annotators, which is in fact what we observed for our system. Table 1 also 

shows the comparison between the system and commercial software on the full database . 

Fig. 3 shows the confusion matrices between the computer system and  (Fig. 3a), 

between  and  (Fig. 3b), and between the HomeCageScan 

system and  (Fig. 3c). A confusion matrix is one way to visualize the agreement 

between two entities, where each entry (x,y) of the matrix represents the probability that the first entity 

(say ) will label a specific behavior as x and the second entity (say the computer 

system ) as y. For instance, two entities with perfect agreement would exhibit a 1 value along every 

entry along the diagonal and 0 everywhere else. In Fig. 3a for example, the matrix value along the 

fourth row and fourth column indicates that the computer system correctly classifies 92% of the 

they labeled by a human observer while 8% of the behaviors are incorrectly 

the color codes used, with red/blue corresponding to better/worse levels of agreement. We also 

observed that adding the position- and velocity-based features led to an improvement in the system  

ability to discriminate between visually similar behaviors and for which the location of the animal in 

the cage provides critical information (see Supplementary M ethods and Supplementary Fig S3). For 

example, drinking (vs. eating) occurs at the water bottle spout while hanging (vs. rearing) mice have at 

least two limbs off the ground. Examples of automated scoring of videos by the system are available as 

Supplementary Movie 1 and Supplementary Movie 2. 

How scalable is the proposed approach to new behaviors? How difficult would it be to train the 

proposed system for the recognition of new behaviors or environments (e.g., outside the home-cage 

and/or using a camera from a different view-point?) The main goal of the present study is to build a 

system that generalizes well to many different laboratory settings. For this reason, we collected and 

annotated a large dataset of videos. Sometimes, however, it might be advantageous to train a more 

system very quickly from very few training examples.  

To investigate this issue, we systematically evaluated the performance of the system as a function of 

the amount of training videos available for training. Fig. 4a shows that a relatively modest amount of 

training data (i.e., as little as 2 minutes of labeled video for each of the eleven training videos) is 

indeed sufficient for robust performance. Additionally, in such cases where generalization is not 

required, an efficient approach would be to train the system on the first few minutes of a video and 

then let the system complete the annotation on the rest of the video. Fig. 4b shows that by using a 
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representative set of only 3 minutes of video data, the system is already able to achieve 90% of its peak 

level.  Near peak performance can be achieved by using 10 minutes of a single video for training.  

 

Characterizing the home-cage behavior of mouse strains 

To demonstrate the applicability of this vision-based approach to large-scale phenotypic analysis, we 

characterized the home-cage behavior of four strains of mice, including the wild-derived strain 

CAST/EiJ, the BTBR strain, a potential model of autism4, as well as two of the most popular inbred 

mouse strains C57BL/6J and DBA/2J. We video recorded n=7 mice of each strain during one 24-hour 

session, encompassing a complete light-dark cycle. An example of an ethogram containing all the eight 

behaviors obtained over a 24-hour continuous recording period for one of the CAST/-EiJ (wild-

derived) strains is shown in Fig. 2h. One obvious feature was that the level of activity of the animal 

decreased significantly during the day (12-24 hr) as compared to night time (0-12hr). In examining the 

hanging and walking behaviors of the four strains, we noted a dramatic increase in activity of the 

CAST/EiJ mice during the dark phase, which show prolonged walking (Fig. 5a) and a much higher 

level of hanging activity (Fig. 5b) than any of the other strains tested. As compared to the CAST/EiJ 

mice, the DBA/2J strain showed an equally high level of hanging at the beginning of the dark phase 

but this activity quickly dampened to that of the other strains C57BL/6J and BTBR. We also found that 

the resting behavior of this CAST/EiJ strain differed significantly from the others: while all four strains 

tended to rest for the same total amount of time (except BTBR which rested significantly more than 

C57BL/6J), we found that the CAST/EiJ tended to have resting bouts (a continuous duration with one 

single label) that lasted almost three times longer than those of any other strain (Fig. 6a-b).  

As BTBR mice have been reported to hyper-groom4, we next examined the grooming behavior of 

BTBR mice. In the study of McFarlane et al.4, grooming was scored manually during a 10-min session 

starting immediately after a 10-min habituation period following the placement of the animal in the 

new environment. Under the same conditions, our system detected that the BTBR strain spent 

approximately 150 seconds grooming compared to the C57BL/6J mice, which spent a little more than 

85 seconds grooming (Fig. 6c). This behavioral difference was reproduced by two more human 

observer  who scored the same videos (Fig. 6c). the 

frame-based accuracy of the system vs. was 90% vs. 91.0%. This shows that the system 

can reliably identify grooming behaviors with nearly the same accuracy as a human annotator. Note 

that in the present study the C57BL/6J mice were approximately 90 days old (+/- 7 days) while the 
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BTBR mice were approximately 80 days old (+/-7 days). In the McFarlane et al. study younger mice 

were used (and repeated testing was performed), but our results essentially validate their findings. 

 

Prediction of strain-type based on behavior 

We characterized the behavior of each mouse with a 32-dimensional vector 

, corresponding to the relative frequency of each of the eight behaviors of interest, as 

predicted by the system, over a 24-hour period. To visualize the similarities/dissimilarities between 

patterns of behaviors exhibited by all twenty-eight individual animals (7 mice × 4 strains) used in our 

behavioral study, we performed a Principal Component Analysis (PCA). Fig. 6d shows the resulting 

twenty-eight data-points, each corresponding to a different animal, projected onto the first three 

principal components. Individual animals tend to cluster by strains even in this relatively low 

dimensional space, suggesting that different strains exhibit unique patterns of behaviors that are 

characteristic of their strain-types. To quantify this statement, we trained and tested a linear SVM 

classifier directly on these patterns of behaviors. Fig. 6e shows a confusion matrix for the resulting 

classifier that indicates the probability with which an input strain (along the rows) was classified as 

each of the 4 strains (along the columns). The higher probabilities along the diagonal and the lower 

off-diagonal values indicate successful classification for all strains. Using a leave-one-animal-out 

procedure, we found that the resulting classifier was able to predict the strain of all animals with an 

accuracy of 90%. 

Application of the system to additional mouse behaviors 

We next asked whether the proposed system could be extended to the recognition of additional 

behaviors beyond the eight standard behaviors described above. We collected a new set of videos for 

an entirely new set of behaviors corresponding to animals interacting with 

wheels (Fig. 7a). The wheel-interaction database thirteen fully annotated one-hour long 

videos taken from six C57BL/6J mice. Here we consider four running on the 

wheel defined by having all 4 paws on the wheel, with the wheel rotating), 

wheel but not running  the wheel other than running), awake but not interacting 

with the wheel , and resting . Using the same leave-one-video-out procedure and 

accuracy formulation as used before for the base , the system achieves 93% accuracy. The 

confusion matrix shown in Fig. 7b indicates that the system can discriminate between visually similar 

interacting with the wheel running on the wheel  (see also 
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Supplementary Movie 3 for a demonstration of the system scoring the wheel-interaction behaviors). In 

order to understand how many annotated examples are required to reach this performance, we repeated 

the same experiment, each time varying the number of training examples available to the system. Fig. 

4c suggests that satisfactory performance can be achieved with only 2 minutes of annotation for each 

training video, corresponding to 90% of the performance obtained using 30 minutes of annotations. Fig. 

4d shows that training with very short segments collected from a single video seems sufficient for 

robust performance on the wheel-interaction database  but, unlike for the eight standard home-cage 

behaviors, the system performance increases linearly with the number of training examples. This might 

be due to the large within-class variation of the action , which 

combines all of the actions that are performed outside the wheel, such as walking, grooming, eating, 

and rearing, within one single category.  

 

DISC USSI O N 

Here we describe a trainable computer vision system capable of capturing the behavior of a single 

mouse in the home-cage environment. As opposed to previous proof-of-concept computer vision 

studies22, 23, our system has been used in a real-world  application, characterizing the behavior of 

several mouse strains and discovering strain-specific features. Moreover, we demonstrate that this 

system adapts well to more complex environments and behaviors that involve additional objects placed 

in the home-cage. We provide open-source software as well as large annotated video databases with 

the hope that it may further encourage the development and benchmarking of similar vision-based 

systems.  

Genetic approaches to understand the neural basis of behavior require cost effective and high-

throughput methodologies to find aberrations in normal behaviors30. From the manual scoring of 

mouse videos (see  above), we have estimated that it requires approximately 22 person-

hours to manually score every frame of a one-hour video with high stringency. Thus, we estimate that 

the 24-hour behavioral analysis conducted above with our system for the twenty-eight animals studied 

would have required almost 15,000 person-hours of manual scoring. An automated computer-vision 

system permits behavioral analysis that would simply be impossible using manual scoring by a human 

experimenter. By leveraging recent advances in graphics processing hardware and exploiting the high-

end graphical processing units (GPU) available on modern computers, the current system runs in real-

time. 
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In principle, our approach should be extendable to other behaviors such as dyskinetic movements in 

 or seizures for the study of epilepsy as well as social behaviors 

involving two or more freely behaving animals. In conclusion, our study shows the promise of 

learning-based and vision-based techniques in complementing existing approaches towards a 

quantitative phenotyping of complex behavior. 

 

M E T H O DS 

Mouse strains and behavioral experiment 

All experiments involving mice were approved by the MIT and Caltech committees on animal care. 

For generating training and testing data we used a diverse pool of hybrid and inbred mice of varying 

size, age, gender, and coat color (both black and agouti coat colors). In addition, we varied the lighting 

angles and used both light  (with a 30 Watt bulb dim red lighting to 

allow our cameras to detect the mice but without substantial circadian entrainment effects.) A JVC 

digital video camera (GR-D93) with frame rate 30 fps was connected to a PC workstation (Dell) via a 

Hauppauge WinTV video card. Using this setup we collected more than 24 distinct MPEG-2 video 

sequences (from one to several hours in length) used for training and testing the system. For processing 

by the computer vision system, all videos were down-sampled to a resolution of 320 ×  240 pixels. The 

throughput of the system could thus be further increased by video recording 4 cages at a time using a 

two-by-two arrangement with a standard 640x480 pixel VGA video resolution.  

Videos of the mouse strains (n=28 videos) were collected separately for the validation experiment, 

using different recording conditions (recorded in a different mouse facility). All mouse strains were 

purchased from the Jackson Laboratory (Bar Harbor, Maine), including C57BL/6J (stock 000664), 

DBA/2J (000671), CAST/EiJ (000928), and BTBR T+ tf/J (002282). Mice were singly housed for 1-3 

days before being video recorded. On the recommendation of Jackson Laboratories, the CAST/EiJ 

mice (n=7) were segregated from our main mouse colony and housed in a quiet space where they were 

only disturbed for husbandry 2-3 times per week. This may have influenced our behavioral 

measurements as the other three mouse strains were housed in a different room. The mice used for the 

running wheel study were 3-month-old C57BL/6J males also obtained from Jackson labs. 
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Data annotation  

Training videos were annotated using a freeware subtitle-editing tool, Subtitle Workshop by UroWorks 

(available at http://www.urusoft.net/products.php?cat=sw&lang=1). A team of eight investigators 

( ) was trained to annotate eight typical mouse home-cage behaviors. The four 

annotators in the  were randomly selected from the Annotator group 1  pool. 

Behaviors of interest included: drinking (defined by the  mouth being juxtaposed to the tip of 

the drinking spout), eating (defined by the mouse reaching and acquiring food from the food bin), 

grooming (defined by the fore- or hind-limbs sweeping across the face or torso, typically as the animal 

is reared up), hanging (defined by grasping of the wire bars with the fore-limbs and/or hind-limbs with 

at least two limbs off the ground), rearing (defined by an upright posture and forelimbs off the ground), 

resting (defined by inactivity or nearly complete stillness), walking (defined by ambulation) and micro-

movements (defined by small movements of the  or limbs). For the  to be 

annotated, every hour of videos took about 22 hours of labor for a total of 264 hours of work. For the 

  it took approximately 110 hours (9 hrs/hr of video) to manually score 9,600 clips of 

a single behavior (corresponding to 5.4 hours of clips compiled from around 20 hours of video). We 

performed secondary screening to remove ambiguous clips, leaving 4,200 clips for which the human-

to-human agreement is very close to 100%. This second screening took around 25 hours for the 2.5 

hour long . Supplementary Fig. S1a-b and Supplementary Fig. S1c-d shows the 

distribution of labels for the  and the full , respectively. 

 

T raining and testing the system  

The evaluation on the full  and set B  shown in Table 1 was obtained using a leave-one-out 

cross-validation procedure. This consists in using all but one of the videos to train the system and using 

the left out video to evaluate the system; repeating this procedure (n = 12) times for all videos. System 

predictions for all the frames are then concatenated to compute the overall accuracy as: (total # frames 

correctly predicted by the system)/(total # frames) and the human-to-human agreement as: (total # 

)/(total # frames). Here a prediction or label is 

 annotations generated by the . Such a 

procedure provides the best estimate of the future performance of a classifier and is standard in 

computer vision. This guarantees that the system is not just recognizing memorized examples but 

generalizing to previously unseen examples. For the , a leave-one-video-out 

http://www.urusoft.net/products.php?cat=sw&lang=1
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procedure is used whereby clips from all except one video are used to train the system while testing is 

performed on clips of the remaining video. This procedure is repeated (n = 12) times for all videos.  A 

single prediction is obtained for each clip (each clip has a single annotated label) via voting across 

frames, and predictions for all the clips of all videos are then concatenated to compute the overall 

accuracy as (# total clips corrected predicted by the system) / (# total clips).  

In addition to measuring the overall performance of the system as above, we also used a confusion 

matrix to visualize the behavioral category in Fig. 3 and Fig. 6e. A 

confusion matrix is a common visualization tool used in multi-class classification problems23. Each 

row of the matrix represents a true class, and each column represents a predicted class.  Each entry 

(x,y) in the confusion matrix is the probability that an instance of behavior x (along the rows) will be 

classified as instance of behavior y (along the columns), as computed by (# frames annotated as type x 

and classified as type y )/(# frames annotated as type x). Here the frame predictions are obtained by 

concatenating the predictions for all videos, as described above. The higher probabilities along the 

diagonal and the lower off-diagonal values indicate successful classification for all behavioral types. 

For example, in Fig. 3a, 94% of the are classified correctly by the system, 

and 5% are  

 

Comparison with the commercial software  

In order to compare the proposed system with available commercial software, the HomeCageScan 2.0 

(CleverSys Inc), we manually matched the thirty-eight output labels from the HomeCageScan to the 

eight behaviors used in the present work. For instance, slow walking , walking left  

and walking right -  With 

the exception of very few behaviors (e.g.,  ), we were able to 

match all HomeCageScan output behaviors to one of our eight behaviors of interest (see 

Supplementary Table S2 for a listing of the correspondences used between the labels of the 

HomeCageScan and our system). It is possible that further fine-tuning of HomeCageScan parameters 

could have improved upon the accuracy of the scoring. 

 

Statistical analysis 

To detect differences among the four strains of mice, ANOVAs were conducted for each type of 

-hoc test was used to test pair-wise significances. All post-



 

 14 

hoc tests were Bonferroni corrected for multiple comparisons. For the grooming behavior, a one-tailed 

st was used since only two groups (C57BL/6J and BTBR) were being compared and we 

had predicted that BTBR would groom more than C57BL/6J.  

 

Mouse strain comparisons 

Patterns of behaviors were computed from the system output by segmenting the system predictions for 

a 24-hour video into four non-overlapping 6-hour long segments (corresponding to the first and second 

halves of the day and night periods) and calculating a histogram for the eight types of behaviors for 

each video segment. The resulting 8-dimensional (one dimension for each of the eight behaviors) 

vectors were then concatenated to obtain a single 32-dimensional vector (8 dimensions ×  4 vectors) for 

each animal. To visualize the data, we performed a Principal Component Analysis directly on these 32-

dimensional vectors.  

In addition, we conducted a pattern classification analysis on the patterns of behaviors by training and 

testing an SVM classifier directly on the 32-dimensional vectors. This supervised procedure was 

conducted using a leave-one-animal out approach, whereby twenty-seven animals were used to train a 

classifier to predict the strain of the remaining animal (CAST/EiJ, BTBR, C57BL/6J or DBA/2J). The 

procedure was repeated twenty eight times (once for each animal). Accuracy measures for the four 

strain predictions was then computed as (# animals correctly classified) / (# animals). 
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F igure L egends 
 

F igure 1. Home-cage behaviors for training the system. Snapshots taken from representative videos 

for the eight home-cage behaviors of interest. 

 

F igure 2. Overview of the proposed system for monitoring the home-cage behavior of mice. The 

computer vision system consists of a feature computation module (a-f) and a classification module (g). 

(a) A background subtraction procedure is first applied to an input video to compute a foreground 

mask for pixels belonging to the animal vs. the cage. (b) A sub-window centered on the animal is 

cropped from each video frame based on the location of the mouse (see Supplementary Method).  

Two types of features are then computed: (c) space-time motion features as well as (f) position- and 

velocity-based features. In order to speed-up the computation, motion-features are extracted from the 

sub-window (b) only. These motion features are derived from combinations of the response of V1-like 

afferent motion units that are tuned to different directions of motion (d, e).  (f) Position- and velocity-

based features are derived from the instantaneous location of the animal in a cage. These features are 

computed from a bounding box tightly surrounding the animal in the foreground mask. (g) The output 

of this feature computation module consists of 310 features per frame that are then passed to a 

statistical classifier, an SVMHMM (Hidden Markov Model Support Vector Machine), to reliably 

classify every frame of a video sequence into a behavior of interest. (h) Ethogram of sequence of labels 

predicted by the system from a 24-hr continuous recording session for one of the CAST/EiJ mice. The 

red panel shows the ethogram for 24-hours, and the light blue panel provides a zoomed version 

corresponding to the first 30 minutes of recording. The animal is highly active as it was just placed in a 

the new cage. 

 

F igure 3. Confusion matrix of the system. Confusion matrices evaluated on the doubly annotated 

 to compare the agreement between (a) the system and human scoring, (b) human to human scoring, 

and (c) the CleverSys system to human scoring. Each entry (x,y) in the confusion matrix is the 

probability with which an instance of a behavior x (along rows) is classified as type y (along column), 

and which is computed as (# frames annotated as type x and classified as type y )  / (# frames annotated 

as type x). As a result, values sum to a value of 1 in each row. The higher probabilities along the 

diagonal and the lower off-diagonal values indicate successful classification for all categories. Using 
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the annotations made by the Annotator group 1

for measuring agreement between ground truth (row) with system (computer system), with the 

 (human) and with baseline software (CleverSys commercial system). For a less 

cluttered visualization, entries with values less than 0.01 are not shown. The color bar indicates the 

percent agreement, with more intense shades of red indicating agreements close to 100% and lighter 

shades of blue indicating small percentages of agreement. 

 

F igure 4: T raining the system with varying numbers of examples.  For this leave-one-video-out 

experiment, the system accuracy is computed as a function of the amount of video data (in 

minutes/video) used for training the system. For each leave-one-out trial, the system is trained on a 

representative set of videos and tested on the full length of the left-out video. A representative set 

consisting of  1-minute segments is manually selected such that the total time of each of the 8 

behaviors is roughly the same. (a) Average accuracy and standard error across the 12 leave-one-out 

  (b) Average accuracy and standard error across the 13 leave-one-out runs 

wheel-interaction  We also perform the training/testing on the same video: a 

representative set of video segments is selected from the first 30 minute of each video for training; 

testing is done on the remaining of the video from the 30th minute to the end of the same video. 

System accuracy is computed as a function of the amount of video data (in minute) used for training. 

(c) Average accuracy and standard error across the 12 runs on the full database  (d) Average 

accuracy and standard error across the 13 runs on the wheel- . 

 

F igure 5. Walking and hanging behaviors for the four mouse strains. Average time spent for (a) 

the  and (b) hanging  behaviors for each of the four strains of mice (n=7 animals for each 

strain) over a 20-hour period. The plots begin at the onset of the dark cycle, which persists for 11 hours 

(indicated by the gray region), followed by 9 hours of the light cycle. Every 15 minute of the 20-hour 

period, we computed the total time one mouse spent walking or hanging within a one-hour temporal 

window centered at that current time point. The CAST/EiJ (wild-derived) strain is much more active 

than the three other strains as measured by their walking and hanging behaviors. Shaded areas around 

the curves correspond to 95% confidence intervals and the darker curve corresponds to the mean. The 

colored bars indicate the duration when one strain exhibits a statistically significant difference 

(*p  post test) with other strains. 
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F igure 6.  Behavioral characterization of four mouse strains. (a) Average total resting time for each 

of the four strains of mice over 24 hours (n=7 animals for each strain). (b) Average duration of resting 

bouts (defined as a continuous duration with one single behavior). While all strains tend to spend 

roughly the same total amount of time resting (a), the CAST/EiJ tends to rest for longer stretches. 

Mean +/- SEM are shown, *p t. (c) Total time spent grooming 

exhibited by the BTBR strain as compared to the C57BL/6J strain within 10th-20th minute after placing 

the animals in a novel cage. Here we show that using the computer system we were able to match 

manual scoring by two experimenters and reproduce previously published results4 demonstrating the 

propensity of the BTBR strain to groom more than a control C57BL/6J. Mean +/- SEM are shown, 

*p<0.05 by -tailed. p = 0.04 for System and p =0.0254 for human  = 0.0273 

). (d-e) Characterizing the genotype of individual animals based on the patterns of 

behavior measured by the computer system. The pattern of behaviors for each animal is a 32-

dimensional vector, corresponding to the relative frequency of each of the eight behaviors of interest, 

as predicted by the system, over a 24-hour period. (d) To visualize the similarities/dissimilarities 

between patterns of behaviors exhibited by all twenty-eight individual animals (seven mice for each of 

the ×  four strains) used in our behavioral study, we performed a Principal Component Analysis (PCA) 

on the patterns of behaviors. The result shows that animals tend to cluster by strain (with the exception 

of 2 BTBR mice that tended to behave more like DBA/2J). (e) Confusion matrix for an SVM classifier 

trained on the patterns of behavior using a leave-one-animal-out procedure. The SVM classifier is able 

to predict the genotype of individual animals with an accuracy of 90% (chance level is 25% for this 4-

class classification problem). The confusion matrix shown here indicates the probability for an input 

strain (along the rows) to be classified, based on its pattern of behavior, as each of the four alternative 

strains (along the columns). The higher probabilities along the diagonal and the lower off-diagonal 

values indicate successful classification for all categories. For example, the value of 1.0 for the 

C57BL/6J strain means that all C57BL/6J animals were correctly classified as such. 

 

F igure 7: Extension of the system to wheel running and investigatory behaviors. (A) Snapshots 

taken from the -interaction database : 

resting outside of the wheel, awake but not interacting with the wheel, running on the wheel, and 

interacting with (but not running on) the wheel. (B) Confusion matrices for the system (column) vs. 

human scoring (row). 
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Table 1: Accuracy of the System. Shown is a comparison between the performance of the proposed 

system, a leading commercial software (HomeCageScan 2.0 by CleverSys system) and human 

annotators. Training and testing of the system was based on a leave-one-video-out procedure. This 

consists in using all but one of the videos to train the system and using the left out video to evaluate the 

system; repeating this procedure (n=12) times for all videos. Here a prediction or label is considered 

the Annotator group 1  Accuracies are 

reported as averaged across frames/ across behaviors (underlined numbers, computed as the average of 

the diagonal entities in the Fig. 3 confusion matrix; chance level is 12.5% for a 8-class classification 

problem). The somewhat better performance of the proposed system averaged across frames vs. 

behaviors suggest that it does better on the most common behaviors (as expected from the training 

procedure).  

 

 Our system  
CleverSys 

commercial system 

Human  

Annotator group 2  

set B  

(1.6 hours of video) 
76.6 % / 74.3% 60.9 % / 64.0% 71.6 % / 75.7% 

full   

(over 10 hours of video) 
77.6 % / 74.4%  61.0 % / 65.8%   
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