258 research outputs found
The effects of prolonged vegetative reproduction of the two Iranian olive cv. tree cultivars (Dezful Baghmalek and Dezful Safiabad) on morphological traits
Somaclonal variation of the two Iranian olive cultivars named Dezful Baghmalek (DB) and Dezful Safiabad (DS) during the long-term propagation among 7 subcultures were evaluated. Morphological traits such as leaf length, leaf width, number of leaves on shoot, the length of shoots, internode distance and rooting percentage were measured. The study results showed that DB affected somaclonal variations more than the DS cultivar, especially rooting percentage, but the DS cultivar had a steady behavior, especially rooting percentage, during several subcultures. Although in all the traits that were fluctuating, irregular and unpredictable changes such as the length of shoots were observed, the most significant trait that was studied with almost a similar vibration in the two cultivars were leaf length and width changes measures. Totally, we could not select any specific subculture period for the creation of the maximum satisfied morphological changes, because it was suitable for increasing the internode distance (DB) and leaf length which were in the second and seventh subcultures that were optimized. Consequently, it was suitable for DS in the seventh subculture. For the purpose of accomplishing the proper morphological changes in the length of shoots, number of leaves and enhancement of rooting percentage in DB cultivar and also, internode distance and leaf width increase in DS cultivar, somaclonal variation during several subcultures will be appropriate.Key words: Olea europaea L., somaclonal variation, Dezful cultivars
High resolution melting curve assay for detecting rs12979860 IL28B polymorphisms involved in response of iranian patients to chronic hepatitis C treatment
Background: A recent genome-wide association study (GWAS) on patients with chronic hepatitis C (CHC) treated with peginterferon and ribavirin (pegIFN-α/RBV) identified a single nucleotide polymorphism (SNP) on chromosome 19 (rs12979860) which was strongly associated with a sustained virological response (SVR). The aim of this study was twofold: to study the relationship between IL28B rs12979860 and sustained virological response (SVR) to pegIFN-α/RVB therapy among CHC patients and to detect the rs12979860 polymorphism by high resolution melting curve (HRM) assay as a simple, fast, sensitive, and inexpensive method. Materials and Methods: The study examined outcomes in 100 patients with chronic hepatitis C in 2 provinces of Iran from December 2011 to June 2013. Two methods were applied to detect IL28B polymorphisms: PCR-sequencing as a gold standard method and HRM as a simple, fast, sensitive, and inexpensive method. Results: The frequencies of IL28B rs12979860 CC, CT, and TT alleles in chronic hepatitis C genotype 1a patients were 10 (10/100), 35 (35/100), and 6 (6/100) and in genotype 3a were 13 (13/100), 31 (31/100), and 5 (5/100), respectively. In genotype 3a infected patients, rs12979860 (CC and CT alleles) and in genotype 1a infected patients (CC allele) were significantly associated with a sustained virological response (SVR). The SVR rates for CC, CT and TT (IL28B rs12979860) were 18, 34 and 4, respectively. Multiple logistic regression analysis identified two independent factors that were significantly associated with SVR: IL-28B genotype (rs 12979860 CC vs TT and CT; odds ratio ORs, 7.86 and 4.084, respectively), and HCV subtype 1a (OR, 7.46). In the present study, an association between SVR rates and IL28B polymorphisms was observed. Conclusions: The HRM assay described herein is rapid, inexpensive, sensitive and accurate for detecting rs12979860 alleles in CHC patients. This method can be readily adopted by any molecular diagnostic laboratory with HRM capability and will be clinically beneficial in predicting treatment response in HCV genotype 1 and 3 infected patients. In addition, it was demonstrated that CC and CT alleles in HCV-3a and the CC allele in HCV-1a were significantly associated with response to pegIFN-α/RBV treatment. The present results may help identify subjects for whom the therapy might be successful
A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues
The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones
Reversible Pulmonary Hypertension and Isolated Right-sided Heart Failure Associated with Hyperthyroidism
Hyperthyroidism may present with signs and symptoms related to dysfunction of a variety of organs. Cardiovascular pathology in hyperthyroidism is common. A few case reports describe isolated right heart failure, tricuspid regurgitation, and pulmonary hypertension as the prominent cardiovascular manifestations of hyperthyroidism. Although most textbooks do not mention hyperthyroidism as a cause of pulmonary hypertension and isolated right heart failure, the literature suggests that some hyperthyroid patients may develop reversible pulmonary hypertension and isolated right heart failure. We report a case of hyperthyroidism presenting with signs and symptoms of isolated right heart failure, tricuspid regurgitation, and pulmonary hypertension, which resolved with treatment of hyperthyroidism
Standardization of insurance operations and risk assessment and edition of manual for recognition of management and natural disaster risks in shrimp farms, and feasibility study of insuring shrimp hatcheries
According to achieve sustainable production in shrimp farming industry, it is necessary to provide the relief of producers through insurance. Aquaculture faces various environmental conditions such as unpredictable climate changes, epidemic diseases, harsh water factors, that may affect the production cycle, and impact on producer's life. In this research, the effects of various factors on production of cultured shrimp have been studied. The project conducted through completion of questionaries by random selected of small scale farms, and all large farms which engaged in production in that years. In order to increase the accuracy of responses, special questionnaires provided to fill in by expertise experts. All data explained the share of management and natural factors on production process
A systematic review evaluating the psychometric properties of measures of social inclusion
Introduction: Improving social inclusion opportunities for population health has been identified as a priority area for international policy. There is a need to comprehensively examine and evaluate the quality of psychometric properties of measures of social inclusion that are used to guide social policy and outcomes. Objective: To conduct a systematic review of the literature on all current measures of social inclusion for any population group, to evaluate the quality of the psychometric properties of identified measures, and to evaluate if they capture the construct of social inclusion. Methods: A systematic search was performed using five electronic databases: CINAHL, PsycINFO, Embase, ERIC and Pubmed and grey literature were sourced to identify measures of social inclusion. The psychometric properties of the social inclusion measures were evaluated against the COSMIN taxonomy of measurement properties using pre-set psychometric criteria. Results: Of the 109 measures identified, twenty-five measures, involving twenty-five studies and one manual met the inclusion criteria. The overall quality of the reviewed measures was variable, with the Social and Community Opportunities Profile-Short, Social Connectedness Scale and the Social Inclusion Scale demonstrating the strongest evidence for sound psychometric quality. The most common domain included in the measures was connectedness (21), followed by participation (19); the domain of citizenship was covered by the least number of measures (10). No single instrument measured all aspects within the three domains of social inclusion. Of the measures with sound psychometric evidence, the Social and Community Opportunities Profile-Short captured the construct of social inclusion best. Conclusions: The overall quality of the psychometric properties demonstrate that the current suite of available instruments for the measurement of social inclusion are promising but need further refinement. There is a need for a universal working definition of social inclusion as an overarching construct for ongoing research in the area of the psychometric properties of social inclusion instruments
Improving Estimations of Spatial Distribution of Soil Respiration Using the Bayesian Maximum Entropy Algorithm and Soil Temperature as Auxiliary Data
This study was supported by the NSF China Programs (Grant No. 31300539 and 31570629) and the Public Welfare Technology Application Research Program of Zhejiang province (Grant No. 2015C31004).Soil respiration inherently shows strong spatial variability. It is difficult to obtain an accurate characterization of soil respiration with an insufficient number of monitoring points. However, it is expensive and cumbersome to deploy many sensors. To solve this problem, we proposed employing the Bayesian Maximum Entropy (BME) algorithm, using soil temperature as auxiliary information, to study the spatial distribution of soil respiration. The BME algorithm used the soft data (auxiliary information) effectively to improve the estimation accuracy of the spatiotemporal distribution of soil respiration. Based on the functional relationship between soil temperature and soil respiration, the BME algorithm satisfactorily integrated soil temperature data into said spatial distribution. As a means of comparison, we also applied the Ordinary Kriging (OK) and Co-Kriging (Co-OK) methods. The results indicated that the root mean squared errors (RMSEs) and absolute values of bias for both Day 1 and Day 2 were the lowest for the BME method, thus demonstrating its higher estimation accuracy. Further, we compared the performance of the BME algorithm coupled with auxiliary information, namely soil temperature data, and the OK method without auxiliary information in the same study area for 9, 21, and 37 sampled points. The results showed that the RMSEs for the BME algorithm (0.972 and 1.193) were less than those for the OK method (1.146 and 1.539) when the number of sampled points was 9 and 37, respectively. This indicates that the former method using auxiliary information could reduce the required number of sampling points for studying spatial distribution of soil respiration. Thus, the BME algorithm, coupled with soil temperature data, can not only improve the accuracy of soil respiration spatial interpolation but can also reduce the number of sampling points.Yeshttp://www.plosone.org/static/editorial#pee
- …