12,433 research outputs found
The identification of continuous, spatiotemporal systems
We present a method for the identification of continuous, spatiotemporal
dynamics from experimental data. We use a model in the form of a partial
differential equation and formulate an optimization problem for its estimation
from data. The solution is found as a multivariate nonlinear regression problem
using the ACE-algorithm. The procedure is successfully applied to data,
obtained by simulation of the Swift-Hohenberg equation. There are no
restrictions on the dimensionality of the investigated system, allowing for the
analysis of high-dimensional chaotic as well as transient dynamics. The demands
on the experimental data are discussed as well as the sensitivity of the method
towards noise
Parametric, nonparametric and parametric modelling of a chaotic circuit time series
The determination of a differential equation underlying a measured time
series is a frequently arising task in nonlinear time series analysis. In the
validation of a proposed model one often faces the dilemma that it is hard to
decide whether possible discrepancies between the time series and model output
are caused by an inappropriate model or by bad estimates of parameters in a
correct type of model, or both. We propose a combination of parametric
modelling based on Bock's multiple shooting algorithm and nonparametric
modelling based on optimal transformations as a strategy to test proposed
models and if rejected suggest and test new ones. We exemplify this strategy on
an experimental time series from a chaotic circuit where we obtain an extremely
accurate reconstruction of the observed attractor.Comment: 19 pages, 8 Fig
The German Bight (North Sea) is a nursery area for both locally and externally produced sprat juveniles
To better understand the role of the German Bight (GB) as a nursery area for juvenile North Sea sprat Sprattus sprattus we sought to determine whether the area may receive only locally or also externally produced offspring. We sampled juveniles during 3 trawl surveys in the GB in August, September, and October 2004 and applied otolith microstructure analysis in order to reconstruct their distributions of the day-of-first-increment-formation (dif). These were contrasted with spatial and seasonal patterns of sprat egg abundance in the GB and its adjacent areas, observed during 6 monthly plankton surveys. It was found that the majority of juveniles originated mainly from April/May 2004, coinciding with high spawning activity west of the GB, whereas spawning and larval production inside the GB peaked notably later, in May/June. This indicated that a large proportion of juveniles was produced outside the GB and transported subsequently into it through passive and/or active migration. Shifts to later mean difs from one survey to the next and length distributions indicative of the simultaneous presence of multiple cohorts, supported the notion that the GB is a complex retention and nursery area for sprat offspring from different North Sea spawning grounds and times. Later born juveniles had significantly faster initial growth rates than earlier born conspecifics, which was likely temperature-mediated, given the strong correlation between back-calculated growth histories and sea surface temperature as a proxy for thermal histories of juveniles (r(2) = 0.52). (C) 2009 Elsevier B.V. All rights reserved
Design and calibration of a rocket-borne electron spectrometer for investigation of particle ionization in the nighttime midlatitude E region
An explanation was developed for the formation, near midnight at midlatitudes, of a broad electron density layer extending approximately from 120 to 180 km and usually referred to as the intermediate E layer. The responsible mechanism is believed to be the converging vertical ion drifts resulting from winds of the solar semidiurnal tide. Numerical solutions of the continuity equation appropriate to the intermediate layer is described for particular models of ion drift, diffusion coefficents, and ionization production. Analysis of rocket observations of the layer show that the ionization rate is highly correlated with the planetary geomagnetic index, K sub p. Particle flux measurements support the idea that energetic electrons are the principal source of this ionization. A semiconductor spectrometer experiment for investigation of the particle flux, spectrum, and angular properties was designed and successfully flown on a Nike Apache rocket. A detailed description of the theory, design, and calibration of the experiment and some preliminary results presented
Probing the evolving massive star population in Orion with kinematic and radioactive tracers
We assemble a census of the most massive stars in Orion, then use stellar
isochrones to estimate their masses and ages, and use these results to
establish the stellar content of Orion's individual OB associations. From this,
our new population synthesis code is utilized to derive the history of the
emission of UV radiation and kinetic energy of the material ejected by the
massive stars, and also follow the ejection of the long-lived radioactive
isotopes 26Al and 60Fe. In order to estimate the precision of our method, we
compare and contrast three distinct representations of the massive stars. We
compare the expected outputs with observations of 26Al gamma-ray signal and the
extent of the Eridanus cavity. We find an integrated kinetic energy emitted by
the massive stars of 1.8(+1.5-0.4)times 10^52 erg. This number is consistent
with the energy thought to be required to create the Eridanus superbubble. We
also find good agreement between our model and the observed 26Al signal,
estimating a mass of 5.8(+2.7-2.5) times 10^-4 Msol of 26Al in the Orion
region. Our population synthesis approach is demonstrated for the Orion region
to reproduce three different kinds of observable outputs from massive stars in
a consistent manner: Kinetic energy as manifested in ISM excavation, ionization
as manifested in free-free emission, and nucleosynthesis ejecta as manifested
in radioactivity gamma-rays. The good match between our model and the
observables does not argue for considerable modifications of mass loss. If
clumping effects turn out to be strong, other processes would need to be
identified to compensate for their impact on massive-star outputs. Our
population synthesis analysis jointly treats kinematic output and the return of
radioactive isotopes, which proves a powerful extension of the methodology that
constrains feedback from massive stars.Comment: Accepted for publication in A&A, 10 page
A rocket-borne pulse-height analyzer for energetic particle measurements
The pulse-height analyzer basically resembles a time-sharing multiplexing data-acquisition system which acquires analog data (from energetic particle spectrometers) and converts them into digital code. The PHA simultaneously acquires pulse-height information from the analog signals of the four input channels and sequentially multiplexes the digitized data to a microprocessor. The PHA together with the microprocessor form an on-board real-time data-manipulation system. The system processes data obtained during the rocket flight and reduces the amount of data to be sent back to the ground station. Consequently the data-reduction process for the rocket experiments is speeded up. By using a time-sharing technique, the throughput rate of the microprocessor is increased. Moreover, data from several particle spectrometers are manipulated to share one information channel; consequently, the TM capacity is increased
A rocket-borne data-manipulation experiment using a microprocessor
The development of a data-manipulation experiment using a Z-80 microprocessor is described. The instrumentation is included in the payloads of two Nike Apache sounding rockets used in an investigation of energetic particle fluxes. The data from an array of solid-state detectors and an electrostatic analyzer is processed to give the energy spectrum as a function of pitch angle. The experiment performed well in its first flight test: Nike Apache 14.543 was launched from Wallops Island at 2315 EST on 19 June 1978. The system was designed to be easily adaptable to other data-manipulation requirements and some suggestions for further development are included
- …