1,268 research outputs found
A model for alignment between microscopic rods and vorticity
Numerical simulations show that microscopic rod-like bodies suspended in a
turbulent flow tend to align with the vorticity vector, rather than with the
dominant eignevector of the strain-rate tensor. This paper investigates an
analytically solvable limit of a model for alignment in a random velocity field
with isotropic statistics. The vorticity varies very slowly and the isotropic
random flow is equivalent to a pure strain with statistics which are
axisymmetric about the direction of the vorticity. We analyse the alignment in
a weakly fluctuating uniaxial strain field, as a function of the product of the
strain relaxation time and the angular velocity about
the vorticity axis. We find that when , the rods are
predominantly either perpendicular or parallel to the vorticity
Polymers in linear shear flow: a numerical study
We study the dynamics of a single polymer subject to thermal fluctuations in
a linear shear flow. The polymer is modeled as a finitely extendable nonlinear
elastic FENE dumbbell. Both orientation and elongation dynamics are
investigated numerically as a function of the shear strength, by means of a new
efficient integration algorithm. The results are in agreement with recent
experiments.Comment: 7 pages, see also the preceding paper
(http://arxiv.org/nlin.CD/0503028
Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos
A novel view for the emergence of chaos in Lorenz-like systems is presented.
For such purpose, the Lorenz problem is reformulated in a classical mechanical
form and it turns out to be equivalent to the problem of a damped and forced
one dimensional motion of a particle in a two-well potential, with a forcing
term depending on the ``memory'' of the particle past motion. The dynamics of
the original Lorenz system in the new particle phase space can then be
rewritten in terms of an one-dimensional first-exit-time problem. The emergence
of chaos turns out to be due to the discontinuous solutions of the
transcendental equation ruling the time for the particle to cross the
intermediate potential wall. The whole problem is tackled analytically deriving
a piecewise linearized Lorenz-like system which preserves all the essential
properties of the original model.Comment: 48 pages, 25 figure
The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals
The new results of using short (2-4mm) bent crystals for extraction and
collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A
broad range of energies from 6 to 65 GeV has been studied in the same crystal
collimation set-up. The efficiency of extraction more than 85% and intensity
more than 10E12 were obtained by using crystal with the length 2-mm and the
angle 1 mrad. The new regime of extraction is applied now at the accelerator to
deliver the beam for different experimental setups within the range of
intensity 10E7-10E12ppp.Comment: Presented at EPAC 2002 (Paris, June 3-7), 3p
Polymer transport in random flow
The dynamics of polymers in a random smooth flow is investigated in the
framework of the Hookean dumbbell model. The analytical expression of the
time-dependent probability density function of polymer elongation is derived
explicitly for a Gaussian, rapidly changing flow. When polymers are in the
coiled state the pdf reaches a stationary state characterized by power-law
tails both for small and large arguments compared to the equilibrium length.
The characteristic relaxation time is computed as a function of the Weissenberg
number. In the stretched state the pdf is unstationary and exhibits
multiscaling. Numerical simulations for the two-dimensional Navier-Stokes flow
confirm the relevance of theoretical results obtained for the delta-correlated
model.Comment: 28 pages, 6 figure
Phase I study of intermittent and chronomodulated oral therapy with capecitabine in patients with advanced and/or metastatic cancer
BACKGROUND: The combination of capecitabine and gemcitabine at Fixed Dose Rate (FDR) has been demonstrated to be well tolerated, with apparent efficacy in patients with advanced cancers. FDR gemcitabine infusion leads to enhanced intracellular accumulation of drug and possible augmented clinical effect. The goals of this phase I study were to determine the maximum-tolerated dose (MTD) of chronomodulated capecitabine in patients with advanced cancer and to describe the dose-limiting toxicities (DLT), the safety profile of this way of administration. METHODS: Patients with advanced solid tumours who had failed to response to standard therapy or for whom no standard therapy was available were elegible for this study. Capecitabine was administered orally according to following schedule: 1/4 of dose at 8:00 a.m.; 1/4 of dose at 6:00 p.m. and 1/2 of dose at 11:00 p.m. each day for 14 consecutive days, followed by a 7-day rest period. RESULTS: All 27 patients enrolled onto the study were assessable for toxicity. The most common toxicities during the first two cycles of chemotherapy were fatigue, diarrhoea and hand foot syndrome (HFS). Only one out of the nine patients treated at capecitabine dose of 2,750 mg/m(2 )met protocol-specified DLT criteria (fatigue grade 4). However, at these doses the majority of cycles of therapy were delivered without dose reduction or delay. No other episodes of DLT were observed at the same dose steps and at the lower dose steps of capecitabine (1,500/1,750/2,000/2,250/2,500 mg/m(2)). The dose of 2,750 mg/m(2 )is recommended for further study. Tumor responses were observed in patients with metastatic breast and colorectal cancer. CONCLUSION: High doses of chronomodulated capecitabine can be administered with acceptable toxicity. The evidence of antitumor activity deserves further investigation in phase II combination chemotherapy studies
Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
In 2008 the blazar Markarian 421 entered a very active phase and was one of
the brightest sources in the sky at TeV energies, showing frequent flaring
episodes. Using the data of ARGO-YBJ, a full coverage air shower detector
located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at
gamma ray energies E > 0.3 TeV during the whole year. The observed flux was
variable, with the strongest flares in March and June, in correlation with
X-ray enhanced activity. While during specific episodes the TeV flux could be
several times larger than the Crab Nebula one, the average emission from day 41
to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6)
10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards.
This paper concentrates on the flares occurred in the first half of June.
This period has been deeply studied from optical to 100 MeV gamma rays, and
partially up to TeV energies, since the moonlight hampered the Cherenkov
telescope observations during the most intense part of the emission. Our data
complete these observations, with the detection of a signal with a statistical
significance of 3.8 standard deviations on June 11-13, corresponding to a gamma
ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed
differential spectrum, corrected for the intergalactic absorption, can be
represented by a power law with an index alpha = -2.1 extending up to several
TeV. The spectrum slope is fully consistent with previous observations
reporting a correlation between the flux and the spectral index, suggesting
that this property is maintained in different epochs and characterizes the
source emission processes.Comment: Accepted for publication on ApJ
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a
detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ
experiment in Tibet. Because the cosmic ray particles are positive charged, the
magnetic field between the sun and the earth deflects them from straight
trajectories and results in a shift of the shadow from the true location of the
sun. Here we show that the shift measures the intensity of the field which is
transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure
Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100
GeV in coincidence with the prompt emission detected by satellites using the
Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ)
air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R.
China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate
Chambers), and large field of view (about 2 sr, limited only by the atmospheric
absorption), the ARGO-YBJ air shower detector is particularly suitable for the
detection of unpredictable and short duration events such as GRBs. The search
is carried out using the "single particle technique", i.e. counting all the
particles hitting the detector without measurement of the energy and arrival
direction of the primary gamma rays.
Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites
occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was
possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data
finding no statistically significant emission. With a lack of detected spectra
in this energy range fluence upper limits are profitable, especially when the
redshift is known and the correction for the extragalactic absorption can be
considered. The obtained fluence upper limits reach values as low as 10**{-5}
erg cm**{-2} in the 1-100 GeV energy region.
Besides this individual search for a higher energy counterpart, a statistical
study of the stack of all the GRBs both in time and in phase was made, looking
for a common feature in the GRB high energy emission. No significant signal has
been detected.Comment: accepted for publication in Ap
- âŠ