1,268 research outputs found

    A model for alignment between microscopic rods and vorticity

    Full text link
    Numerical simulations show that microscopic rod-like bodies suspended in a turbulent flow tend to align with the vorticity vector, rather than with the dominant eignevector of the strain-rate tensor. This paper investigates an analytically solvable limit of a model for alignment in a random velocity field with isotropic statistics. The vorticity varies very slowly and the isotropic random flow is equivalent to a pure strain with statistics which are axisymmetric about the direction of the vorticity. We analyse the alignment in a weakly fluctuating uniaxial strain field, as a function of the product of the strain relaxation time τs\tau_{\rm s} and the angular velocity ω\omega about the vorticity axis. We find that when ωτs≫1\omega\tau_{\rm s}\gg 1, the rods are predominantly either perpendicular or parallel to the vorticity

    Polymers in linear shear flow: a numerical study

    Full text link
    We study the dynamics of a single polymer subject to thermal fluctuations in a linear shear flow. The polymer is modeled as a finitely extendable nonlinear elastic FENE dumbbell. Both orientation and elongation dynamics are investigated numerically as a function of the shear strength, by means of a new efficient integration algorithm. The results are in agreement with recent experiments.Comment: 7 pages, see also the preceding paper (http://arxiv.org/nlin.CD/0503028

    Neutral beam injection for DEMO alternative scenarios

    Get PDF

    Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos

    Full text link
    A novel view for the emergence of chaos in Lorenz-like systems is presented. For such purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to the problem of a damped and forced one dimensional motion of a particle in a two-well potential, with a forcing term depending on the ``memory'' of the particle past motion. The dynamics of the original Lorenz system in the new particle phase space can then be rewritten in terms of an one-dimensional first-exit-time problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled analytically deriving a piecewise linearized Lorenz-like system which preserves all the essential properties of the original model.Comment: 48 pages, 25 figure

    The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals

    Full text link
    The new results of using short (2-4mm) bent crystals for extraction and collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up. The efficiency of extraction more than 85% and intensity more than 10E12 were obtained by using crystal with the length 2-mm and the angle 1 mrad. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp.Comment: Presented at EPAC 2002 (Paris, June 3-7), 3p

    Polymer transport in random flow

    Get PDF
    The dynamics of polymers in a random smooth flow is investigated in the framework of the Hookean dumbbell model. The analytical expression of the time-dependent probability density function of polymer elongation is derived explicitly for a Gaussian, rapidly changing flow. When polymers are in the coiled state the pdf reaches a stationary state characterized by power-law tails both for small and large arguments compared to the equilibrium length. The characteristic relaxation time is computed as a function of the Weissenberg number. In the stretched state the pdf is unstationary and exhibits multiscaling. Numerical simulations for the two-dimensional Navier-Stokes flow confirm the relevance of theoretical results obtained for the delta-correlated model.Comment: 28 pages, 6 figure

    Phase I study of intermittent and chronomodulated oral therapy with capecitabine in patients with advanced and/or metastatic cancer

    Get PDF
    BACKGROUND: The combination of capecitabine and gemcitabine at Fixed Dose Rate (FDR) has been demonstrated to be well tolerated, with apparent efficacy in patients with advanced cancers. FDR gemcitabine infusion leads to enhanced intracellular accumulation of drug and possible augmented clinical effect. The goals of this phase I study were to determine the maximum-tolerated dose (MTD) of chronomodulated capecitabine in patients with advanced cancer and to describe the dose-limiting toxicities (DLT), the safety profile of this way of administration. METHODS: Patients with advanced solid tumours who had failed to response to standard therapy or for whom no standard therapy was available were elegible for this study. Capecitabine was administered orally according to following schedule: 1/4 of dose at 8:00 a.m.; 1/4 of dose at 6:00 p.m. and 1/2 of dose at 11:00 p.m. each day for 14 consecutive days, followed by a 7-day rest period. RESULTS: All 27 patients enrolled onto the study were assessable for toxicity. The most common toxicities during the first two cycles of chemotherapy were fatigue, diarrhoea and hand foot syndrome (HFS). Only one out of the nine patients treated at capecitabine dose of 2,750 mg/m(2 )met protocol-specified DLT criteria (fatigue grade 4). However, at these doses the majority of cycles of therapy were delivered without dose reduction or delay. No other episodes of DLT were observed at the same dose steps and at the lower dose steps of capecitabine (1,500/1,750/2,000/2,250/2,500 mg/m(2)). The dose of 2,750 mg/m(2 )is recommended for further study. Tumor responses were observed in patients with metastatic breast and colorectal cancer. CONCLUSION: High doses of chronomodulated capecitabine can be administered with acceptable toxicity. The evidence of antitumor activity deserves further investigation in phase II combination chemotherapy studies

    Gamma ray flares from Mrk421 in 2008 observed with the ARGO-YBJ detector

    Get PDF
    In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-11 photons cm^-2 s^-1 for energies E > 1 TeV, and decreased afterwards. This paper concentrates on the flares occurred in the first half of June. This period has been deeply studied from optical to 100 MeV gamma rays, and partially up to TeV energies, since the moonlight hampered the Cherenkov telescope observations during the most intense part of the emission. Our data complete these observations, with the detection of a signal with a statistical significance of 3.8 standard deviations on June 11-13, corresponding to a gamma ray flux about 6 times larger than the Crab one above 1 TeV. The reconstructed differential spectrum, corrected for the intergalactic absorption, can be represented by a power law with an index alpha = -2.1 extending up to several TeV. The spectrum slope is fully consistent with previous observations reporting a correlation between the flux and the spectral index, suggesting that this property is maintained in different epochs and characterizes the source emission processes.Comment: Accepted for publication on ApJ

    Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

    Get PDF
    The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure

    Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode

    Get PDF
    We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100 GeV in coincidence with the prompt emission detected by satellites using the Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ) air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R. China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate Chambers), and large field of view (about 2 sr, limited only by the atmospheric absorption), the ARGO-YBJ air shower detector is particularly suitable for the detection of unpredictable and short duration events such as GRBs. The search is carried out using the "single particle technique", i.e. counting all the particles hitting the detector without measurement of the energy and arrival direction of the primary gamma rays. Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data finding no statistically significant emission. With a lack of detected spectra in this energy range fluence upper limits are profitable, especially when the redshift is known and the correction for the extragalactic absorption can be considered. The obtained fluence upper limits reach values as low as 10**{-5} erg cm**{-2} in the 1-100 GeV energy region. Besides this individual search for a higher energy counterpart, a statistical study of the stack of all the GRBs both in time and in phase was made, looking for a common feature in the GRB high energy emission. No significant signal has been detected.Comment: accepted for publication in Ap
    • 

    corecore