128 research outputs found

    Coherent Bayesian analysis of inspiral signals

    Full text link
    We present in this paper a Bayesian parameter estimation method for the analysis of interferometric gravitational wave observations of an inspiral of binary compact objects using data recorded simultaneously by a network of several interferometers at different sites. We consider neutron star or black hole inspirals that are modeled to 3.5 post-Newtonian (PN) order in phase and 2.5 PN in amplitude. Inference is facilitated using Markov chain Monte Carlo methods that are adapted in order to efficiently explore the particular parameter space. Examples are shown to illustrate how and what information about the different parameters can be derived from the data. This study uses simulated signals and data with noise characteristics that are assumed to be defined by the LIGO and Virgo detectors operating at their design sensitivities. Nine parameters are estimated, including those associated with the binary system, plus its location on the sky. We explain how this technique will be part of a detection pipeline for binary systems of compact objects with masses up to 20 \sunmass, including cases where the ratio of the individual masses can be extreme.Comment: Accepted for publication in Classical and Quantum Gravity, Special issue for GWDAW-1

    Random template placement and prior information

    Full text link
    In signal detection problems, one is usually faced with the task of searching a parameter space for peaks in the likelihood function which indicate the presence of a signal. Random searches have proven to be very efficient as well as easy to implement, compared e.g. to searches along regular grids in parameter space. Knowledge of the parameterised shape of the signal searched for adds structure to the parameter space, i.e., there are usually regions requiring to be densely searched while in other regions a coarser search is sufficient. On the other hand, prior information identifies the regions in which a search will actually be promising or may likely be in vain. Defining specific figures of merit allows one to combine both template metric and prior distribution and devise optimal sampling schemes over the parameter space. We show an example related to the gravitational wave signal from a binary inspiral event. Here the template metric and prior information are particularly contradictory, since signals from low-mass systems tolerate the least mismatch in parameter space while high-mass systems are far more likely, as they imply a greater signal-to-noise ratio (SNR) and hence are detectable to greater distances. The derived sampling strategy is implemented in a Markov chain Monte Carlo (MCMC) algorithm where it improves convergence.Comment: Proceedings of the 8th Edoardo Amaldi Conference on Gravitational Waves. 7 pages, 4 figure

    Sensor data classification for the indication of lameness in sheep

    Get PDF
    Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed to determine the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep

    Sensor data classification for the indication of lameness in sheep

    Get PDF
    Lameness is a vital welfare issue in most sheep farming countries, including the UK. The pre-detection at the farm level could prevent the disease from becoming chronic. The development of wearable sensor technologies enables the idea of remotely monitoring the changes in animal movements which relate to lameness. In this study, 3D-acceleration, 3D-orientation, and 3D-linear acceleration sensor data were recorded at ten samples per second via the sensor attached to sheep neck collar. This research aimed to determine the best accuracy among various supervised machine learning techniques which can predict the early signs of lameness while the sheep are walking on a flat field. The most influencing predictors for lameness indication were also addressed here. The experimental results revealed that the Decision Tree classifier has the highest accuracy of 75.46%, and the orientation sensor data (angles) around the neck are the strongest predictors to differentiate among severely lame, mildly lame and sound classes of sheep
    • …
    corecore