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Summary

One method of testing feedback control systems and elec-
trical networks such as amplifiers, filters, cables or delay line
magnets is to send a step pulse or some other test pulse into the
network and observe how it is transmitted or reflected. One obtains
an output signal y(t) of a characteristic shape. The computer pro=
gramme analyses this shape, compares it with the input pulse and
produces plots of the frequency response, i.e. amplitude and phase

of the network.

Principle and use of the programme

The programme in compiled version consists of 34 binary
cards plus a small FORTRAN subroutine which contains the formula
of the Laplace transform of the test input pulse. It can be run
as an express job because it requires 16000 memory locations and
not more than 10 sec central processor time on the CDC 6600 com-

puter.



For example, we may havec used a time domain reflectometer
with an attached x~y-recorder which plots the reflccted or transmitted
pulse on paper, or wc may have photographed a transient on an oscillo=-
scope as shown in fig. 1. We take readings of the signal y(t) and the
time t in ¥ = 4 consccutive points and punch this number N into the
first data card and the values t and y(%) into the following cards as
shown in table 1. It is not neccssary to take rcadings at cqual time
intervals but to take only the more significant points (e.g. maxima
and minima) because the programme connccts thesc points by a fairly
smooth curve (cubic Lagrange interpolation) and calculates 600 cqui~-

distant sampling points situated in the middle of every time interval.

In the last data card we punch the maximum frequency up to
which we want to plot the frequency response (sce table 1, frequency

unit = 1/time unit, c.g. scc and Hz or nanosec and GHz).

Now the programme carries out the Laplace transform from
the time domain into the frequency domain replacing the integral by
o sum: The signal y(t) is multiplied by c™99t iy 600 sampling
"points. These products are multiplied by the time interval ,

Ty = (tn - t1)/6OO and summed up. This yields the complex amplitude
at a frequency wo. The process is recpeated for 500 frequencies wo,
2Wo, 3Wo, .4 500 Wo in order to obtain detailed plots of frequency
response., Then the 500 complex amplitudes of the output pulse are
divided by the amplitudes of the input pulse in order to evaluate the
network function (c.g."gain' or transfer function of an amplifier).
The amplitudes of the input pulse are evaluated in an cxchangeable
subprogramme COMPLEX FUNCTION,SPECTR(F) containing the Laplace trans-
form of the input pulse (c.g.. step pulsc). Finally, the magnitude
and phase of the network function are evaluated, the 500 points are
connected by linear interpolation and plotted on the CALCOMP plotter.
We obtain two plots 10 x 14 inches of the amplitude and phase lag

(modulo 360°) versus frequency as shown in fig. 2a, 2b.
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The following difficulties have arisen by the fact that the
signal is recorded only from t = t1 to tn’ whereas the integral should
extend from -ooto + oo, If we want the integral to wvanish for t < t1
we have to shift the base line vertically from y(t) to y(t)*y(t1),
otherwise the programme would return the frequency response of a signal

which jumps at t = t, from y = O to y(tq). But even if the base line

is clamped to zero al t = t1 a second difficulty arises at the end of
the record in fig. 1, because the signal at tn is not mero and one can~-
not extend the numerical integration with 600 sampling points to infi-
nity. Therefore, the numerical integration is carried out only up to

t = tn and an analytical expression is added for the integral from tn
to infinity using the stationary value y = y(ﬁn). Much computer time
has been saved by the use of the complex notation rather than a Fourler

J@oto ;o cvaluated only once

series with real terms, becausc the factor e
and the other 600 ¢ 500 = 300000 terms follow from rccurrent multiplica-

tion.

3. BExamples of subroutines for various test pulses
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Fig. 1 shows a step pulse which has been sent through a
300 MHz low=pass filter for the wide band pick-up station. The Laplace
transform of an ideal step pulse is 1/p where p = jw is the complex
frequency. We write this Laplace transform of the input pulse into

the following subprogramme for the analysis of step pulse responses:
CYMPLEX FUNCTI@N SPECTR(F)
CAMgN PIBY2, PI2
JUEGA = PI2¥F
SPECTR=CMPLX (0., ~1./fEGA)

RETURN
END

Quantities PIBY2=n/2 and PI2=27m are 15 digit constants which were
stored in the COMMON store for conveniencce and may be referenced by

the subprogramme., It can be scen that the real part of SPECTR is gero
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and thé imaginary part - j/w. If the bandwidth of the oscilloscope
does not allow to show 111 details or if the risc time of the step
pulse is not ncgligibly small, & correction can be madc multlplylng

the spcotrum by a bandwidth limiting factor
. 2 2
-(£/£,) ~(1.733 t,°f)
e

where fo is thc upper froequency limit where the oscilloscope atte-
nuates by 1 ncper = 8.686 db or alternatively t, is the rise time

from 10 % to 90 %. The Gaussian crror distribution function
. , | ,
e'(i/fo)

has been assumecd for the specctrum and the crror integral for the risc
of the test pulse, becausec a preamplificr with a lincar Dhasc response
(no phase distortion) should have such an amplitudc rcsponsc. For
exanple, the spectrum of a step pulse with 0.15 nanoscc rise time
which produccd the responsc in fig. 1, is given by the following

subroutinc:s

CYLPLEX FUNCTI@N SPECTR(F)
CPMLIPN PIBY2,PI2

RISETM=0.15
PUEGA=PI2*F
SPECTR=CMPLX (0. , ~EXP ({1 . T33*RISETMX*F ) ¥*2 ) /¢MECA )

RETURN
END

The results arc shown in fig. 22 and 2b. We aséumod that the input
pulsc occurrcd at to. If we shift the origin of the time scale so
that the output pulse is declayed by 7, this only adds & linear phase
9 = T to the phase responsc. This may be usceful when comparing
input and output pulses on a long cable where the phase shifts would
otherwisc be impracticably large. The programme can also be used

to analyse reflected pulscs.



Fig. % shows how the step pulse of a time domain reflecto=-
meter is reflccted on one of our BNC 750 terminations which have a
parasitic capacity. In this case onc has to change the polarity of
the signal beforc entering the data into the computer (in order to
obtain the corrcct phase). The reflccted signal p(t) measured in
pexcent of a completely rcflected pulse was punched into the data
cards, and thc same subprogrammc with 0.15 nsec rise time was used.

The results are shown in fig. 4a, 4b. The reflection coefficient

Z -7
p =
7+ Zo

starts with a phasc of -90O (parasitic capacity) and its magnitude
increasecs with frcquency up to 41 % at 3.8 GHz. It scems to be com=
pensated at 4.6 GHz (resonance). It would be difficult to measure
this frequency response directly with a bridge because of the presence

of othcr reflecctions on the same cable.

b) Spectrum analysis and responsc to a short unit impulse
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The simplest subprogramme is the followings:

CYUPLEX FUNCTI¢N SPECTR(F)
SPECTR=1.

RETURN

END

If we use it to analysc the transient in fig. 3, we obtain the plots
in fig. 5a and 5b that show the spectrum of the output pulse without
any modification (division by 1.)., However, SPECTR=1. can also

be regarded as the Laplace transform of a short unit impulse

(Dirac p -function) that could hafe been sont through some amplificr
of limited bandwidth and therefore producces an output pulse which

is much longcr than the test pulse. In this case we would also usec
the above subprogramme and fig. 5a, 5b would be the frequency res-

ponse of the amplificr.
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We can use any test pulse of which the Laplace transform
is known, e.g. a pulse obtained by a condenser discharge with time
constant RC = 14.8 msec and initial voltage 50 V. Then we have the

subroutine

CPMPLEX FUNCTI@UN SPECTR(F)
COMMPN PIBYZ,PI2
CYMPLEX P

P=CMPLX (0. ,PI2%F)
RC=14.8
SPECTR=50,%RC/(1.+P*¥RC)

RETURN
END

P = j2nf 1is the complex freguency. We can multiply the spectrum

by a constant in order to increase the amplitude and we can delay
-pT

a pulse by 7 multiplying the Laplace transform by e P . Example

of a negative step pulse of 3 V which is delayed by 2.1 msecs

P=CMPLX(0.,PI2%F)
SPECTR=CEXP (P*TAU)*(~3,/P)

If we have a sequence of pulses we add the Laplace transforms (linear
superposition). A positive step plus a delayed negative step of the

same height form a square pulse of length T:

CYMPLEX FUNCTI@N SPECTR(F)
cAMigN PIBY2,PIZ2
CHMPLEX P

P=CMPLX (0. ,PI2*F)
TAU=2,1 '
SPECTR=3,/P~CEXP (P*TAU) %3, /P

RETURN
END
PS/6713



In all preceding cascs a rise time correcction can be made by multi-

: -(£/54)?
plying the whole SPECTR by the factor e 07

4+ Final remarks

This programme is called "SNOPSER" because it is the counter-
part of another computer programme "RESPONS" which solves the inverse
problem, i.e. to calculate the transient rcsponse of a network of which
the frequency response has been measured or is given by o mathematical
expression in terms of the circuit elements. It has been usced to calcu-
late for example how various signals are transmitted through long cables
plus an amplifier or how a control system rcsponds to a sudden pertur-
bation. Both programmes accept the samec subroutines "SPECTR(F)". With
this pair of computer programmes we have a free choice between measure-
ments of transient response or frequency response whichever 1s more

practical.

H. H. Unstédtter

Distribution: (open)

Scientific Staff MPS and ST
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Fig. 1 1 ns/div.

Fig. 3 time base: 0.2 ns/div.,

vertical: 2% /division.
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