566 research outputs found

    Advanced roll bite models for cold and temper rolling processes

    Get PDF
    This paper describes on-going efforts made to develop a fast and robust roll bite model for cold and temper rollingprocesses including a non-circular roll profile and a mixed lubrication model based on lubricant flow and surfaceasperity deformation models (only Coulomb friction is used in this paper however). First, the existing roll bitemodels are reviewed in details to understand their physics, their specificities, their differences and their resolutionstrategies, with a particular focus on strategies allowing for short computing time (CPU) even for heavily deformednon circular roll profiles. From this preliminary analysis, some existing strategies are selected to develop a newroll bite model. It includes in particular calculation of roll surface circumferential displacements for roll profiledetermination and an efficient relaxation technique that updates the relaxation factor dynamically at each rollstripcoupling iteration. The resulting computing time is generally less than one second (on a single processor)and convergence has been obtained for all types of cold and temper rolling conditions, from tandem mill heavyreductions to double reduction of very thin strips and to very light reduction temper rolling (< 0.5%). Simulationresults are also discussed against finite element (FE) results. Finally, it is illustrated how this new roll bite modelcan be used on an industrial database to develop accurate presets of roll force for temper mills

    Influence of crustal dust and sea spray supermicron particle concentrations and acidity on inorganic NO_3^- aerosol during the 2013 Southern Oxidant and Aerosol Study

    Get PDF
    Inorganic aerosol composition was measured in the southeastern United States, a region that exhibits high aerosol mass loading during the summer, as part of the 2013 Southern Oxidant and Aerosol Study (SOAS) campaign. Measurements using a Monitor for AeRosols and GAses (MARGA) revealed two periods of high aerosol nitrate (NO_^3−) concentrations during the campaign. These periods of high nitrate were correlated with increased concentrations of supermicron crustal and sea spray aerosol species, particularly Na^+ and Ca^(2+), and with a shift towards aerosol with larger (1 to 2.5 ÎŒm) diameters. We suggest this nitrate aerosol forms by multiphase reactions of HNO_3 and particles, reactions that are facilitated by transport of crustal dust and sea spray aerosol from a source within the United States. The observed high aerosol acidity prevents the formation of NH_4NO_3, the inorganic nitrogen species often dominant in fine-mode aerosol at higher pH. Calculation of the rate of the heterogeneous uptake of HNO_3 on mineral aerosol supports the conclusion that aerosol NO_3^− is produced primarily by this process, and is likely limited by the availability of mineral cation-containing aerosol surface area. Modeling of NO_3^− and HNO_3 by thermodynamic equilibrium models (ISORROPIA II and E-AIM) reveals the importance of including mineral cations in the southeastern United States to accurately balance ion species and predict gas–aerosol phase partitioning

    Biogenic and biomass burning organic aerosol in a boreal forest at HyytiÀlÀ, Finland, during HUMPPA-COPEC 2010

    Get PDF
    Submicron aerosol particles were collected during July and August 2010 in HyytiĂ€lĂ€, Finland, to determine the composition and sources of aerosol at that boreal forest site. Submicron particles were collected on Teflon filters and analyzed by Fourier transform infrared (FTIR) spectroscopy for organic functional groups (OFGs). Positive matrix factorization (PMF) was applied to aerosol mass spectrometry (AMS) measurements and FTIR spectra to identify summertime sources of submicron aerosol mass at the sampling site. The two largest sources of organic mass (OM) in particles identified at HyytiĂ€lĂ€ were (1) biogenic aerosol from surrounding local forest and (2) biomass burning aerosol, transported 4–5 days from large wildfires burning near Moscow, Russia, and northern Ukraine. The robustness of this apportionment is supported by the agreement of two independent analytical methods for organic measurements with three statistical techniques. FTIR factor analysis was more sensitive to the chemical differences between biogenic and biomass burning organic components, while AMS factor analysis had a higher time resolution that more clearly linked the temporal behavior of separate OM factors to that of different source tracers even though their fragment mass spectrum were similar. The greater chemical sensitivity of the FTIR is attributed to the nondestructive preparation and the functional group specificity of spectroscopy. The FTIR spectra show strong similarities among biogenic and biomass burning factors from different regions as well as with reference OM (namely olive tree burning organic aerosol and α-pinene chamber secondary organic aerosol (SOA)). The biogenic factor correlated strongly with temperature and oxidation products of biogenic volatile organic compounds (BVOCs), included more than half of the oxygenated OFGs (carbonyl groups at 29% and carboxylic acid groups at 22%), and represented 35% of the submicron OM. Compared to previous studies at HyytiĂ€lĂ€, the summertime biogenic OM is 1.5 to 3 times larger than springtime biogenic OM (0.64 ÎŒg m^−3 and 0.4 ÎŒg m^−3, measured in 2005 and 2007, respectively), even though it contributed only 35% of OM. The biomass burning factor contributed 25% of OM on average and up to 62% of OM during three periods of transported biomass burning emissions: 26–28 July, 29–30 July, and 8–9 August, with OFG consisting mostly of carbonyl (41%) and alcohol (25%) groups. The high summertime terrestrial biogenic OM (1.7 ÎŒg m^−3) and the high biomass burning contributions (1.2 ÎŒg m^−3) were likely due to the abnormally high temperatures that resulted in both stressed boreal forest conditions with high regional BVOC emissions and numerous wildfires in upwind regions

    Selected reactive oxygen species and antioxidant enzymes in common bean after Pseudomonas syringae pv. phaseolicola and Botrytis cinerea infection

    Get PDF
    Phaseolus vulgaris cv. Korona plants were inoculated with the bacteria Pseudomonas syringae pv. phaseolicola (Psp), necrotrophic fungus Botrytis cinerea (Bc) or with both pathogens sequentially. The aim of the experiment was to determine how plants cope with multiple infection with pathogens having different attack strategy. Possible suppression of the non-specific infection with the necrotrophic fungus Bc by earlier Psp inoculation was examined. Concentration of reactive oxygen species (ROS), such as superoxide anion (O2 -) and H2O2 and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) were determined 6, 12, 24 and 48 h after inoculation. The measurements were done for ROS cytosolic fraction and enzymatic cytosolic or apoplastic fraction. Infection with Psp caused significant increase in ROS levels since the beginning of experiment. Activity of the apoplastic enzymes also increased remarkably at the beginning of experiment in contrast to the cytosolic ones. Cytosolic SOD and guaiacol peroxidase (GPOD) activities achieved the maximum values 48 h after treatment. Additional forms of the examined enzymes after specific Psp infection were identified; however, they were not present after single Bc inoculation. Subsequent Bc infection resulted only in changes of H2O2 and SOD that occurred to be especially important during plant–pathogen interaction. Cultivar Korona of common bean is considered to be resistant to Psp and mobilises its system upon infection with these bacteria. We put forward a hypothesis that the extent of defence reaction was so great that subsequent infection did not trigger significant additional response

    Regional Similarities and NOx‐Related Increases in Biogenic Secondary Organic Aerosol in Summertime Southeastern United States

    Full text link
    During the 2013 Southern Oxidant and Aerosol Study, Fourier transform infrared spectroscopy (FTIR) and aerosol mass spectrometer (AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass concentrations were 15–60% higher at CTR than at LRK, but their time series had moderate correlations (r ~ 0.5). However, NOx had no correlation (r = 0.08) between the two sites with nighttime‐to‐early‐morning peaks 3–10 times higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at both sites: fossil fuel combustion‐related organic aerosols, mixed organic aerosols, and biogenic organic aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab‐generated particle mass from the photochemical oxidation of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of factors at both sites and a third nighttime NOx‐related factor (33% of OM) at CTR but a daytime nitrate‐related factor (28% of OM) at LRK. NOx was correlated with BOA and LO‐OOA for NOx concentrations higher than 1 ppb at both sites, producing 0.5 ± 0.1 Όg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 Όg/m3 for CTR‐BOA additional biogenic OM for each 1 ppb increase of NOx.Key PointsAerosol concentration and composition are largely similar at two different forested sites during summertime in the southeastern United StatesFTIR of ambient biogenic SOA factors are similar to isoprene and monoterpene chamber experiment, supporting NOx‐related oxidation pathwaysNOx increases biogenic SOA by 0.5 ± 0.1 Όg/m3 for CTR‐LO‐OOA and 1.0 ± 0.3 Όg/m3 for CTR‐BOA for each ppb NOx above 1 ppb at Centreville but not at Look Rock (where NOx was usually below 1 ppb)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/1/jgrd54860-sup-0001-SI.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/2/jgrd54860.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146465/3/jgrd54860_am.pd

    Schwannoma-like pleomorphic adenoma of the parotid

    Get PDF
    Pleomorphic adenoma is the most common benign salivary gland tumour. It can occur in any salivary gland, but is most frequently found in the parotid gland. Chondroid metaplasia is a frequent finding in pleomorphic adenoma. Other forms of metaplasia have been described, but are encountered less frequently. We report a rare case of unusual pleomorphic adenoma of the parotid gland with schwannoma-like feature

    Organic nitrate aerosol formation via NO_3 + biogenic volatile organic compounds in the southeastern United States

    Get PDF
    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO_3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO_3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO_3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C_(10)H_(17)NO_5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C_5H_9NO_5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO_3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO_3 + BVOCs

    Ethylene Synthesis and Regulated Expression of Recombinant Protein in Synechocystis sp PCC 6803

    Get PDF
    The ethylene-forming enzyme (EFE) from Pseudomonas syringae catalyzes the synthesis of ethylene which can be easily detected in the headspace of closed cultures. A synthetic codon-optimized gene encoding N-terminal His-tagged EFE (EFEh) was expressed in Synechocystis sp. PCC 6803 (Synechocystis) and Escherichia coli (E. coli) under the control of diverse promoters in a self-replicating broad host-range plasmid. Ethylene synthesis was stably maintained in both organisms in contrast to earlier work in Synechococcus elongatus PCC 7942. The rate of ethylene accumulation was used as a reporter for protein expression in order to assess promoter strength and inducibility with the different expression systems. Several metal-inducible cyanobacterial promoters did not function in E. coli but were well-regulated in cyanobacteria, albeit at a low level of expression. The E. coli promoter P(trc) resulted in constitutive expression in cyanobacteria regardless of whether IPTG was added or not. In contrast, a Lac promoter variant, P(A1lacO-1), induced EFE-expression in Synechocystis at a level of expression as high as the Trc promoter and allowed a fine level of IPTG-dependent regulation of protein-expression. The regulation was tight at low cell density and became more relaxed in more dense cultures. A synthetic quorum-sensing promoter system was also constructed and shown to function well in E. coli, however, only a very low level of EFE-activity was observed in Synechocystis, independent of cell density

    Lineage Diversion of T Cell Receptor Transgenic Thymocytes Revealed by Lineage Fate Mapping

    Get PDF
    Background: The binding of the T cell receptor (TCR) to major histocompatibility complex (MHC) molecules in the thymus determines fates of TCRαÎČTCR\alpha\beta lymphocytes that subsequently home to secondary lymphoid tissue. TCR transgenic models have been used to study thymic selection and lineage commitment. Most TCR transgenic mice express the rearranged TCRαÎČTCR\alpha\beta prematurely at the double negative stage and abnormal TCRαÎČ populations of T cells that are not easily detected in non-transgenic mice have been found in secondary lymphoid tissue of TCR transgenic mice. Methodology and Principal Findings: To determine developmental pathways of TCR-transgenic thymocytes, we used Cre-LoxP-mediated fate mapping and show here that premature expression of a transgenic TCRαÎČTCR\alpha\beta diverts some developing thymocytes to a developmental pathway which resembles that of gamma delta cells. We found that most peripheral T cells with the HY-TCR in male mice have bypassed the RORÎłt-positive CD4+8+CD4^{+}8^{+} (double positive, DP) stage to accumulate either as CD4−8−CD4^{-}8^{-} (double negative, DN) or as CD8α+CD8\alpha^{+} T cells in lymph nodes or gut epithelium. Likewise, DN TCRαÎČTCR\alpha\beta cells in lymphoid tissue of female mice were not derived from DP thymocytes. Conclusion: The results further support the hypothesis that the premature expression of the TCRαÎČTCR\alpha\beta can divert DN thymocytes into gamma delta lineage cells
    • 

    corecore