5,165 research outputs found

    Nonlinear transport of Bose-Einstein condensates through mesoscopic waveguides

    Get PDF
    We study the coherent flow of interacting Bose-condensed atoms in mesoscopic waveguide geometries. Analytical and numerical methods, based on the mean-field description of the condensate, are developed to study both stationary as well as time-dependent propagation processes. We apply these methods to the propagation of a condensate through an atomic quantum dot in a waveguide, discuss the nonlinear transmission spectrum and show that resonant transport is generally suppressed due to an interaction-induced bistability phenomenon. Finally, we establish a link between the nonlinear features of the transmission spectrum and the self-consistent quasi-bound states of the quantum dot.Comment: 23 pages, 16 figure

    1H, 15N, and 13C chemical shift assignments of neuronal calcium sensor-1 homolog from fission yeast

    Get PDF
    The neuronal calcium sensor (NCS) proteins regulate signal transduction processes and are highly conserved from yeast to humans. We report complete NMR chemical shift assignments of the NCS homolog from fission yeast (Schizosaccharomyces pombe), referred to in this study as Ncs1p. (BMRB no. 16446)

    Optimization of an Alkylpolyglucoside-Based Dishwashing Detergent Formulation.

    Get PDF
    The aim of this work was to formulate and optimize the washing performance of an alkylpolyglucoside-based dishwashing detergent. The liquid detergent was formulated with five ingredients of commercial origin: anionic (linear sodium alkylbenzenesulfonate and sodium laurylethersulfate), nonionic (C12–C14 alkylpolyglucoside) and zwitterionic (a fatty acid amide derivative with a betaine structure) surfactants, and NaCl for viscosity control. In addition to the plate test, other properties were investigated including ‘‘cloud point’’, viscosity, and emulsion stability. Statistical analysis software was used to generate a central composite experimental design. Then, a second order design and analysis of experiments approach, known as the Response Surface Methodology, was set up to investigate the effects of the five components of the formulation on the studied properties in the region covering plausible component ranges. The method proved to be efficient for locating the domains of concentrations where the desired properties were met

    Appearance of the central singularity in spherical collapse

    Get PDF
    We analyze here the structure of non-radial nonspacelike geodesics terminating in the past at a naked singularity formed as the end state of inhomogeneous dust collapse. The spectrum of outgoing nonspacelike null geodesics is examined analytically. The local and global visibility of the singularity is also examined by integrating numerically the null geodesics equations. The possible implications of existence of such families towards the appearance of the star in late stages of gravitational collapse are considered. It is seen that the outgoing non-radial geodesics give an appearance to the naked central singularity as that of an expanding ball whose radius reaches a maximum before the star goes within its apparent horizon. The radiated energy (along the null geodesics) is shown to decay very sharply in the neighbourhood of the singularity. Thus the total energy escaping via non-radial null geodesics from the naked central singularity vanishes in the scenario considered here.Comment: 25 pages, 6 figure

    First Astronomical Use of Multiplexed Transition Edge Bolometers

    Get PDF
    We present performance results based on the first astronomical use of multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that achieved first light in June 2001 at the Caltech Submillimeter Observatory (CSO). FIBRE'S detectors are superconducting transition edge sensor (TES) bolometers read out by a SQUID multiplexer. The Fabry-Perot uses a low resolution grating to order sort the incoming light. A linear bolometer array consisting of 16 elements detects this dispersed light, capturing 5 orders simultaneously from one position on the sky. With tuning of the Fabry-Perot over one free spectral range, a spectrum covering Δλ/λ= 1/7 at a resolution of δλ/λ ≈ 1/1200 can be acquired. This spectral resolution is sufficient to resolve Doppler-broadened line emission from external galaxies. FIBRE operates in the 350 µm and 450 µm bands. These bands cover line emission from the important star formation tracers neutral carbon [Cl] and carbon monoxide (CO). We have verified that the multiplexed bolometers are photon noise limited even with the low power present in moderate resolution spectrometry

    The merger of vertically offset quasi-geostrophic vortices

    Get PDF
    We examine the critical merging distance between two equal-volume, equal-potential-vorticity quasi-geostrophic vortices. We focus on how this distance depends on the vertical offset between the two vortices, each having a unit mean height-to-width aspect ratio. The vertical direction is special in the quasi-geostrophic model (used to capture the leading-order dynamical features of stably stratified and rapidly rotating geophysical flows) since vertical advection is absent. Nevertheless vortex merger may still occur by horizontal advection. In this paper, we first investigate the equilibrium states for the two vortices as a function of their vertical and horizontal separation. We examine their basic properties together with their linear stability. These findings are next compared to numerical simulations of the nonlinear evolution of two spheres of potential vorticity. Three different regimes of interaction are identified, depending on the vertical offset. For a small offset, the interaction differs little from the case when the two vortices are horizontally aligned. On the other hand, when the vertical offset is comparable to the mean vortex radius, strong interaction occurs for greater horizontal gaps than in the horizontally aligned case, and therefore at significantly greater full separation distances. This perhaps surprising result is consistent with the linear stability analysis and appears to be a consequence of the anisotropy of the quasi-geostrophic equations. Finally, for large vertical offsets, vortex merger results in the formation of a metastable tilted dumbbell vortex.Publisher PDFPeer reviewe

    First Results on In-Beam gamma Spectroscopy of Neutron-Rich Na and Mg Isotopes at REX-ISOLDE

    Full text link
    After the successful commissioning of the radioactive beam experiment at ISOLDE (REX-ISOLDE) - an accelerator for exotic nuclei produced by ISOLDE - first physics experiments using these beams were performed. Initial experiments focused on the region of deformation in the vicinity of the neutron-rich Na and Mg isotopes. Preliminary results show the high potential and physics opportunities offered by the exotic isotope accelerator REX in conjunction with the modern Germanium gamma spectrometer MINIBALL.Comment: 7 pages, RNB6 conference contributio

    MUSTANG: 90 GHz Science with the Green Bank Telescope

    Full text link
    MUSTANG is a 90 GHz bolometer camera built for use as a facility instrument on the 100 m Robert C. Byrd Green Bank radio telescope (GBT). MUSTANG has an 8 by 8 focal plane array of transition edge sensor bolometers read out using time-domain multiplexed SQUID electronics. As a continuum instrument on a large single dish MUSTANG has a combination of high resolution (8") and good sensitivity to extended emission which make it very competitive for a wide range of galactic and extragalactic science. Commissioning finished in January 2008 and some of the first science data have been collected.Comment: 9 Pages, 5 figures, Presented at the SPIE conference on astronomical instrumentation in 200
    corecore