132 research outputs found

    Heat capacity of liquids: an approach from the solid phase

    Full text link
    We calculate the energy and heat capacity of a liquid on the basis of its elastic properties and vibrational states. The experimental decrease of liquid heat capacity with temperature is attributed to the increasing loss of two transverse modes with frequency ω<1/τ\omega<1/\tau, where τ\tau is liquid relaxation time. In a simple model, liquid heat capacity is related to viscosity and is compared with the experimental data of mercury. We also calculate the vibrational energy of a quantum liquid, and show that transverse phonons can not be excited in the low-temperature limit. Finally, we discuss the implications of the proposed approach to liquids for the problem of glass transition

    Scan Free GEXRF in the Soft X ray Range for the Investigation of Structured Nanosamples

    Get PDF
    Scan free grazing emission X ray fluorescence spectroscopy GEXRF is an established technique for the investigation of the elemental depth profiles of various samples. Recently it has been applied to investigating structured nanosamples in the tender X ray range. However, lighter elements such as oxygen, nitrogen or carbon cannot be efficiently investigated in this energy range, because of the ineffective excitation. Moreover, common CCD detectors are not able to discriminate between fluorescence lines below 1 keV. Oxygen and nitrogen are important components of insulation and passivation layers, for example, in silicon oxide or silicon nitride. In this work, scan free GEXRF is applied in proof of concept measurements for the investigation of lateral ordered 2D nanostructures in the soft X ray range. The sample investigated is a Si3N4 lamellar grating, which represents 2D periodic nanostructures as used in the semiconductor industry. The emerging two dimensional fluorescence patterns are recorded with a CMOS detector. To this end, energy dispersive spectra are obtained via single photon event evaluation. In this way, spatial and therefore angular information is obtained, while discrimination between different photon energies is enabled. The results are compared to calculations of the sample model performed by a Maxwell solver based on the finite elements method. A first measurement is carried out at the UE56 2 PGM 2 beamline at the BESSY II synchrotron radiation facility to demonstrate the feasibility of the method in the soft X ray range. Furthermore, a laser produced plasma source LPP is utilized to investigate the feasibility of this technique in the laboratory. The results from the BESSY II measurements are in good agreement with the simulations and prove the applicability of scan free GEXRF in the soft X ray range for quality control and process engineering of 2D nanostructures. The LPP results illustrate the chances and challenges concerning a transfer of the methodology to the laborator

    Mass spectrometry imaging for plant biology: a review

    Get PDF

    Measuring Current Profiles in the Textor Tokamak

    No full text

    Combined interferometric and polarimetric diagnostics for TEXTOR

    No full text
    A method for combining Faraday rotation measurements with a phase modulated HCN Interferometer is described, which enables the simultaneous determination of the line Integrals Ne\int N_{e}ds and NeBds\int N_{e} \cdot B_{\vert \vert} \cdot ds . Extended to a multichannel system this technique should allow to investigate the distributions of electron density and poloidal magnetic field in a Tokamak plasma. We discuss the principle of operation and appropriate evaluation of measured data with regard to TUTOR parameters and give an estimate for the expected experimental accuracy
    corecore