61 research outputs found

    Baroclinic, Kelvin and inertia-gravity waves in the barostrat instability experiment

    Get PDF
    International audienceThe differentially heated rotating annulus is a laboratory experiment historically designed for modelling large-scale features of the mid-latitude atmosphere. In the present study, we investigate a modified version of the classic baroclinic experiment in which a juxtaposition of convective and motionless stratified layers is created by introducing a vertical salt stratification. The thermal convective motions are suppressed in a central region at mid-depth of the rotating tank, therefore double-diffusive convection rolls can develop only in thin layers located at top and bottom, where the salt stratification is weakest. For high enough rotation rates, the baroclinic instability destabilises the flow in the top and the bottom shallow convective layers, generating cyclonic and anticyclonic eddies separated by the stable stratified layer. Thanks to this alternation of layers resembling the convective and radiative layers of stars, the planetary's atmospheric troposphere and stratosphere or turbulent layers at the sea surface above stratified waters, this new laboratory setup is of interest for both astrophysics and geophysical sciences. More specifically, it allows to study the exchange of momentum and energy between the layers, primarly by the propagation of internal gravity waves (IGW). PIV velocity maps are used to describe the wavy flow pattern at different heights. Using a co-rotating laser and camera, the wave field is well resolved and different wave types can be found: baroclinic waves, Kelvin, and Poincaré type waves. The signature of small-scale IGW can also be observed attached to the baroclinic jet. The baroclinic waves occur at the thin convectively active layer at the surface and the bottom of the tank, though decoupled they show different manifestation of nonlinear interactions. The inertial Kelvin and Poincaré waves seem to be mechanically forced. The small-scale wave trains attached to the meandering jet point to an imbalance of the large-scale flow. For the first time, the simultaneous occurrence of differentwave types is reported in detail for a differentially heated rotating annulus experiment

    Three-dimensional steep wave impact on a vertical cylinder

    Get PDF
    In the present study we investigate the 3-D hydrodynamic slamming problem on a vertical cylinder due to the impact of a steep wave that is moving with a steady velocity. The linear theory of the velocity potential is employed by assuming inviscid, incompressible fluid and irrotational flow. As the problem is set in 3-D space, the employment of the Wagner condition is essential. The set of equations we pose, is presented as a mixed boundary value problem for Laplace's equation in 3-D. Apart from the mixed-type of boundary conditions, the problem is complicated by considering that the region of wetted surface of the cylinder is a set whose boundary depends on the vertical coordinate on the cylinder up to the free-surface. We make some simple assumptions at the start but otherwise we proceed analytically. We find closed-form relations for the hydrodynamic variables, namely the time dependent potential, the pressure impulse, the shape of the wave front (from the contact point to beyond the cylinder) and the slamming force

    The role of the meningeal lymphatic system in local meningeal inflammation and trigeminal nociception

    Get PDF
    A system of lymphatic vessels has been recently characterized in the meninges, with a postulated role in 'cleaning' the brain via cerebral fluid drainage. As meninges are the origin site of migraine pain, we hypothesized that malfunctioning of the lymphatic system should affect the local trigeminal nociception. To test this hypothesis, we studied nociceptive and inflammatory mechanisms in the hemiskull preparations (containing the meninges) of K14-VEGFR3-Ig (K14) mice lacking the meningeal lymphatic system. We recorded the spiking activity of meningeal afferents and estimated the local mast cells population, calcitonin gene-related peptide (CGRP) and cytokine levels as well as the dural trigeminal innervation in freshly-isolated hemiskull preparations from K14-VEGFR3-Ig (K14) or wild type C57BL/6 mice (WT). Spiking activity data have been confirmed in an acquired model of meningeal lymphatic dysfunction (AAV-mVEGFR3(1-4)Ig induced lymphatic ablation). We found that levels of the pro-inflammatory cytokine IL12-p70 and CGRP, implicated in migraine, were reduced in the meninges of K14 mice, while the levels of the mast cell activator MCP-1 were increased. The other migraine-related pro-inflammatory cytokines (basal and stimulated), did not differ between the two genotypes. The patterns of trigeminal innervation in meninges remained unchanged and we did not observe alterations in basal or ATP-induced nociceptive firing in the meningeal afferents associated with meningeal lymphatic dysfunction. In summary, the lack of meningeal lymphatic system is associated with a new balance between pro- and anti-migraine mediators but does not directly trigger meningeal nociceptive state.Peer reviewe

    Overexpression of sphingosine kinase 1 is associated with salivary gland carcinoma progression and might be a novel predictive marker for adjuvant therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overexpression of sphingosine kinase-1 (SPHK1) has been demonstrated to be associated with the development and progression in various types of human cancers. The current study was to characterize the expression of SPHK1 in salivary gland carcinomas (SGC) and to investigate the association between SPHK1 expression and progression of SGC.</p> <p>Methods</p> <p>The expression of SPHK1 was examined in 2 normal salivary gland tissues, 8 SGC tissues of various clinical stages, and 5 pairs of primary SGC and adjacent salivary gland tissues from the same patient, using real-time PCR and western blot analysis. Furthermore, the SPHK1 protein expression was analyzed in 159 clinicopathologically characterized SGC cases by immunohistochemistry. Statistical analyses were performed to determine the prognostic and diagnostic associations.</p> <p>Results</p> <p>SPHK1 expression was found to be markedly upregulated in SGC tissues than that in the normal salivary gland tissues and paired adjacent salivary gland tissues, at both mRNA and protein levels. Statistical analysis revealed a significant correlation of SPHK1 expression with the clinical stage (<it>P </it>= 0.005), T classification (<it>P </it>= 0.017), N classification (<it>P </it>= 0.009), M classification (<it>P </it>= 0.002), and pathological differentiation (<it>P </it>= 0.013). Patients with higher SPHK1 expression had shorter overall survival time, whereas patients with lower SPHK1 expression had better survival. Importantly, patients in the group without adjuvant therapy who exhibited high SPHK1 expression had significantly lower overall survival rates compared with those with low SPHK1 expression. Moreover, multivariate analysis suggested that SPHK1 expression might be an independent prognostic indicator for the survival of SGC patients.</p> <p>Conclusions</p> <p>Our results suggest that SPHK1 expression is associated with SGC progression, and might represent as a novel and valuable predictor for adjuvant therapy to SGC patients.</p

    Sphingosine Kinase 1 Regulates the Akt/FOXO3a/Bim Pathway and Contributes to Apoptosis Resistance in Glioma Cells

    Get PDF
    The aim of this study was to investigate the mechanism through which Sphingosine kinase-1 (SPHK1) exerts its anti-apoptosis activity in glioma cancer cells. We here report that dysregulation of SPHK1 alters the sensitivity of glioma to apoptosis both in vitro and in vivo. Further mechanistic study examined the expression of Bcl-2 family members, including Bcl-2, Mcl-1, Bax and Bim, in SPHK1-overexpressing glioma cells and revealed that only pro-apoptotic Bim was downregulated by SPHK1. Moreover, the transcriptional level of Bim was also altered by SPHK1 in glioma cells. We next confirmed the correlation between SPHK1 and Bim expression in primary glioma specimens. Importantly, increasing SPHK1 expression in glioma cells markedly elevated Akt activity and phosphorylated inactivation of FOXO3a, which led to downregulation of Bim. A pharmacological approach showed that these effects of SPHK1 were dependent on phosphatidylinositol 3-kinase (PI3K). Furthermore, effects of SPHK1 on Akt/FOXO3a/Bim pathway could be reversed by SPHK1 specific RNA interference or SPHK1 inhibitor. Collectively, our results indicate that regulation of the Akt/FOXO3a/Bim pathway may be a novel mechanism by which SPHK1 protects glioma cells from apoptosis, thereby involved in glioma tumorigenesis

    A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

    No full text
    We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally-driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subject to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-BĂ©nard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere whilst also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in midlatitude regions in the Earth’s atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally-driven annulus, However, in contrast to the classical configuration, they typically exhibit more spatiotemporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is investigated and found to be qualitatively consistent with previous numerical results, with nearly isothermal conditions respectively above and below the heat source and sink, and stably-stratified, sloping isotherms in the near-adiabatic interior

    A rotating annulus driven by localized convective forcing: a new atmosphere-like experiment

    No full text
    We present an experimental study of flows in a cylindrical rotating annulus convectively forced by local heating in an annular ring at the bottom near the external wall and via a cooled circular disk near the axis at the top surface of the annulus. This new configuration is distinct from the classical thermally-driven annulus analogue of the atmosphere circulation, in which thermal forcing is applied uniformly on the sidewalls, but with a similar aim to investigate the baroclinic instability of a rotating, stratified flow subject to zonally symmetric forcing. Two vertically and horizontally displaced heat sources/sinks are arranged so that, in the absence of background rotation, statically unstable Rayleigh-BĂ©nard convection would be induced above the source and beneath the sink, thereby relaxing strong constraints placed on background temperature gradients in previous experimental configurations based on the conventional rotating annulus. This better emulates local vigorous convection in the tropics and polar regions of the atmosphere whilst also allowing stably-stratified baroclinic motion in the central zone of the annulus, as in midlatitude regions in the Earth’s atmosphere. Regimes of flow are identified, depending mainly upon control parameters that in turn depend on rotation rate and the strength of differential heating. Several regimes exhibit baroclinically unstable flows which are qualitatively similar to those previously observed in the classical thermally-driven annulus, However, in contrast to the classical configuration, they typically exhibit more spatiotemporal complexity. Thus, several regimes of flow demonstrate the equilibrated co-existence of, and interaction between, free convection and baroclinic wave modes. These new features were not previously observed in the classical annulus and validate the new setup as a tool for exploring fundamental atmosphere-like dynamics in a more realistic framework. Thermal structure in the fluid is investigated and found to be qualitatively consistent with previous numerical results, with nearly isothermal conditions respectively above and below the heat source and sink, and stably-stratified, sloping isotherms in the near-adiabatic interior
    • 

    corecore