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Abstract  
 

The present study treats the three-dimensional hydrodynamic slamming problem on a vertical plate 
subjected to the impact of a steep wave moving towards the plate with a constant velocity. The 
problem is complicated significantly by assuming that there is a rectangular opening on the plate 
which allows the discharge of the liquid. The analysis is conducted analytically assuming linear 
potential theory. The examined configuration determines two boundary value problems with mixed 
conditions which should be taken into account properly. The mathematical process assimilates the 
plate with a degenerate elliptical cylinder allowing thus the employment of elliptical harmonics that 
ensure the satisfaction of the free-surface boundary condition of the front face of the steep wave, 
beyond the plate. This assumption leads to an additional boundary value problem with mixed 
conditions in the vertical direction. The associated problem involves triple trigonometrical series and 
it is solved through a transformation into integral equations. To tackle the boundary value problem in 
the vertical direction a perturbation technique is employed. Extensive numerical calculations are 
presented as regards the variation of the velocity potential on the plate at the instant of the impact 
which reveals the influence of the opening. The theory is extended to the computation of the total 
impulse exerted on the plate using pressure-impulse theory.  
 

Keywords: Steep wave impact; pressure-impulse; elliptical harmonics; mixed boundary value 
problems; triple trigonometrical series; integral equations.   
 
1.! Introduction  
 

Knowing the effects of violent wave impact is crucial for the design of structures operating in, or 
close to the sea environment, such as harbour walls, moored or fixed offshore facilities and seagoing 
vessels. Violent breaking wave impact should be distinguished from the effects induced due to regular 
waves. Steep and breaking waves can exert forces many times greater than non-breaking waves or 
standing waves adjacent to a monolithic vertical harbour wall. In contrast to the latter which is a time 
varying continuous dynamic process that oscillates periodically, violent wave impact is a sudden and 
short-lived collision between a volume of water wave and a structure. The duration of the sudden 
impact is very short and induces huge hydrodynamic loads on the impacted structure. What it is 
interesting and vital in regards, is the study of the early stages of impact when the largest 
hydrodynamic loading occurs.  
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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There are other issues as well that distinguish wave impact problems and make them particularly 
difficult to study. The major challenge that should be undertaken in the study of wave impact 
problems, mainly associated with three-dimensional (3D) formulations, is that they should be 
structured as boundary value problems with mixed conditions; so called Mixed Boundary Value 
Problems (MBVPs). An additional difficulty arises from the fact that in the general case of 3D wave 
impact, the impacted wetted region on the structure is one of the problem’s unknowns and should be 
determined based on specific assumptions regarding the pressure and velocity of the liquid on the 
contact line where the free-surface meets the structure (Korobkin & Scolan, 2006; Scolan & 
Korobkin, 2001; Scolan, 2014). Nevertheless, we will not go deeper in that discussion as the physical 
model investigated in this paper determines explicitly the wetted region.   
 
Judging from the published literature, wave impact has been studied theoretically much less than the 
class of problems associated with the entry of a body into initially static water – so called water-entry 
problems. In wave impact problems, the volume of liquid that impacts the structure has free-surfaces 
on two sides, the upper side and the steep wave front that hits the structure. In contrast, in water entry 
problems, which also lead to slamming, the single free-surface has simpler geometry. The more 
complicated shape and behaviour of the free-surfaces during the wave impact is harder to model than 
the water-entry.  
 
Clearly, the proper formulation of a wave impact problem should account for the real 3D space. The 
difficulties associated with 3D descriptions and the solution methodologies that should be followed, 
literarily discourages integrated investigations. In the review paper of Peregrine (2003) the author 
recognises that ‘In the three-dimensional world at the edge of an ocean, many aspects of the fluid 
dynamics may differ, so we reconsider some of our assumptions’. Nevertheless, the literature 
associated with analytical studies in wave impact problems has so far focused almost exclusively on 
two-dimensional (2D) formulations and approximations relevant to the geometric settings of the most 
violent impacts. These have reached a sufficient maturity and although they consider mainly impact 
on vertical walls, they introduce additional aspects that could influence the phenomenon. In this 
context, Wood et al. (2000) used pressure-impulse theory to investigate the effect of trapped air in 
breaking wave impact. Using the same method Wood & Peregrine (2000) extended the previous work 
to study wave impact on a porous berm. The violent breaking wave impact was investigated in a 
series of papers by Bullock et al. (2007) and Bredmose et al. (2009) & (2015). Bullock et al. (2007) 
presented experimental results from breaking wave tests on vertical and inclined walls. Brendmose et 
al. (2009) considered the effect of the trapped air in the cavity formed by a breaking wave while in the 
last study of the same series, Brendmose et al. (2015) took into account possible aeration of the liquid. 
Cooker (2013) studied the interaction of breaking waves with permeable vertical walls.  Experiments 
on the breaking wave impact on vertical walls were performed also by Cuomo et al. (2010). 
Overturning (plunging) breaking waves were generated by a sloping bed near the wall, while the 
width of the basin was sufficiently small, a fact that practically cancels 3D effects and sets the 
phenomenon in 2D. Examples of studies that rely on numerical methods to solve 2D problems of 
breaking wave on vertical walls are those due to Rafiee et al. (2015) and Carratelli et al. (2016). Both 
studies apply the method of Smoothed Particle Hydrodynamics (SPH) which appears to be more 
flexible than Computational Fluid Dynamics (CFD) solvers to impact problems.  
 
An important simplification is to treat the face of the breaking wave as parallel to the wall at the 
instant of impact. For a vertical wall the wave front is considered completely vertical, ensuring 
maximum hydrodynamic load. In this context, Korobkin & Malenica (2007) studied analytically the 
steep wave impact on an elastic wall, while recently Noar & Greenhow (2015) applied the steep wave 
impact concept to rectangular geometries using pressure-impulse theory. Again, both studies were 
conducted in 2D. For 2D wave impact problems involving non classical boundary conditions such as 
those determined by porous or perforated surfaces, see the short review paper of Korobkin (2008).  
 
By contrast, there are few studies in 3D and they only employ numerical solvers. One method for 
generating a wave that collides violently with a structure is that of the so-called dam-break flow. That 
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is, the wave generated by a volume of liquid which originally is confined by a barrier and released 
suddenly. In fact, the wave generated by the dam-break concept is the most realistic scenario of the 
steep wave. Examples of 3D studies on the subject are those due to Kleefsman et al. (2005) and Yang 
et al. (2010). The former study applied a Volume-of-Fluid (VOF) method to simulate the impact of a 
dam-break flow on perfectly rectangular bodies and Yang et al. (2010) used the unsteady Reynolds 
equations to simulate near-field dam-break flows and estimate the impact forces on obstacles. The 
cases considered resemble flood-like flows and they cannot be characterized as violent wave impact.  
 
Dam-break flows have also been studied using Smoothed Particle Hydrodynamics (SHP) 
methodologies. Examples are the studies of Gómez-Gesteira and Dalrymple (2004) and Cummins et 
al. (2012) who examined the impact of a single wave, originating from a dam-break, with a tall 
coastal structure. In both studies, the structure was a vertical rectangular column. To the author’s best 
knowledge there have been no 3D studies, even using numerical methods, for more complicated 
convex geometries, such as circular cylinders. The main difficulty arises from the fact that the 
impacted wetted region is not known explicitly and must be treated as one of the problem’s 
unknowns. Clearly, relevant difficulties are not encountered when the impacted structure is 
considered rectangular with the front face of the wave parallel to one of the sides of the box-shaped 
column. It is evident that in the concerned case the region that is hit by the wave is known in advance. 
The same is true for the contact lines between the liquid and the body which coincides with the 
column’s edges.     
 
The present study is a contribution towards 3D approaches on wave impact problems. The physical 
model is a vertical plate subjected to a steep wave impact that propagates towards the plate with 
constant velocity. The problem is complicated by assuming that the plate has a rectangular opening. 
The opening is extended to the vertical edges of the plate. The positions and the width of the 
rectangular opening through which liquid is discharged, are variable. The complexity of the problem 
originates from the fact that two mixed boundary value problems (MBVP) should be considered in 
two directions. To solve simultaneously both problems, the plate is assimilated by a degenerate 
cylinder with zero semi-minor axis. Having properly formulated one of the MBVP, the second (in the 
vertical direction) yields a one-dimensional MBVP involving triple trigonometrical series. It should 
be mentioned that in contrast to dual trigonometrical series, triple series of that kind are unfamiliar. 
The solution provided is based on the transformation of the triple trigonometrical series into triple 
series of integral equations. The solution method allows the derivation of analytical expressions for 
the velocity potential. Also, pressure-impulse theory is employed in order to calculate the total 
impulse on the plate.  
 
The study is structured as follows: Section 2 formulates the hydrodynamic problem and describes the 
solution method employed to account for the mixed conditions in the horizontal direction. The 
solution method relies on the expansion of the velocity potential in elliptical harmonics, i.e. products 
of the radial and periodic Mathieu functions. Section 3 uses expansions in perturbations to formulate 
the triple trigonometrical series MBVP. That problem is further analyzed in Section 4 while in Section 
5 the associated MBVP is transformed into a MBVP involving integral equations. The method of 
solution relies on the reduction of the triple series into a dual series. That is achieved in Section 6 and 
Section 7 is dedicated to the solution of the dual series. Section 8 applies the pressure-impulse theory 
to calculate the total impulse exerted on the plate. Relevant computations are presented in Section 8 
followed by discussion. Finally, the conclusions of the study are provided in Section 9.  
 
2.! The hydrodynamic problem 
 

The steep wave propagates from ! > 0 towards the plate that is situated at ! = 0 (Fig. 1). The width 
of the plate is 2& and the water depth is constant and equal to '. A Cartesian coordinate system is 
defined with its origin fixed on the plate at ! = 0, in the centre line of the plate at ( = 0 and on the 
free-surface on ) = 0. The )-axis is pointing in the gravity direction and the flat bottom is situated on 
) = '. The plate has a rectangular opening with its horizontal edges located at ) = * and ) = + 
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from the free-surface. The opening allows the discharge of the liquid at the time of impact. The 
thickness of the plate at  * ≤ ) ≤ + and ( = ±& is considered negligible.  
 
The liquid is assumed to be inviscid and incompressible and the flow irrotational allowing the 
employment of the linear potential theory. The velocity potential is denoted by .(!, (, )). We 
employ the small time approximation and we use nondimensional variables ! = 2&3, ( = 4&, ) = 5&, 
. = 67&, ℎ = ' &, 9 = + & and : = * &. Accordingly, the flow will be described (in the 
nondimensional variables) through the following MBVP (see also Fig. 1).  
 
∇<6 = 0,333(2 > 0,333 − ∞ < 4 < ∞,3330 < 5 < ℎ) (2.1) 
 
6 = 0,333 2 > 0,333 − ∞ < 4 < ∞,3335 = 0 , (2.2) 
 
6 = 0,333 2 = 0,333 4 > 1,3330 < 5 < ℎ , (2.3) 
 

A6

A5
= 0,333 2 > 0,333 − ∞ < 4 < ∞,3335 = ℎ , (2.4) 

 
A6

A2
= 1,333 2 = 0,333 4 < 1,3339 < 5 < ℎ , (2.5) 

 
6 = 0,333 2 = 0,333 4 < 1,333: < 5 < 9 , (2.6) 
 
A6

A2
= 1,333 2 = 0,333 4 < 1,3330 < 5 < : , (2.7) 

 
6 → 0,3332< + 4< → ∞. (2.8) 
 
The field equation under the employed assumptions for the flow is the Laplace’s equation (2.1). The 
boundary conditions (2.2), (2.3) and (2.6) follow from the linearized dynamic conditions on the free-
surfaces and the initial conditions that before the impact the fluid moves towards the plate with 
spatially uniform velocity −7E. The function 6(2, 4, 5) is the sudden change in the velocity potential, 
consistent with the fluid remaining in contact with the plate after the impact. The condition (2.2) 
applies on the upper free-surface and the condition (2.3) refers to the front face of the steep wave, to 
the left and the right, beyond the impacted area. Condition (2.6) is the linearized condition on the 
rectangular opening through which the liquid is discharged. Also, (2.4) is the kinematic condition on 
the flat horizontal bottom, while (2.5) and (2.7) follow from the condition that the liquid hits the plate, 
does not penetrate it and remains in sliding contact with the impermeable upper and lower sections of 
the plate. Finally, (2.8) is the far-field condition which indicates that the disturbance, owning to the 
impact, vanishes at infinity. The model equations (2.1)-(2.8) contain geometric parameters 9 and : to 
specify the position and the width of the gap in the plate, and the depth ℎ which we suppose is small 
enough (compared with the unit width of the plate) for certain expansions below to converge. A value 
of ℎ < F 2 is also realistic.  
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FIG. 1. The geometry of the impact problem. 

 
To satisfy the system of (2.1)-(2.8), and to find an analytical solution to the linearized problem, we 
start by considering the following form for the velocity potential 
 

6 2, 4, 5 = 6G 2, 4 sin KG5

L

GMN

,3 (2.9) 

 
where KG = O − 1 2 F ℎ. Equation (2.9) satisfies the kinematic condition on the horizontal bottom 
(2.4) and the dynamic condition on the upper free-surface (2.2).  
 
Substituting (2.9) into the Laplace equation (2.1) shows that the functions 6G 2, 4  satisfy the two-
dimensional Helmholtz equation  
 
A<6G

A2<
+
A<6G

A4<
− KG

<6G = 0. (2.10) 

 
The solution for 6 or equivalently 6G, should take into account the boundary condition (2.3) on the 
outer parts of the front face of the steep wave. Noting that a plate with finite dimensions can be 
effectively represented by an elliptical cylinder with zero semi-minor axis, we transform the 
Helmholtz equation using elliptical coordinates (P, Q), with 
 
4 = R3coshP3cosQ, (2.11) 
 
2 = R3sinhP3sinQ. (2.12) 
 
The elliptical coordinates P = constant, Q = constant are orthogonally intersecting families of confocal 
ellipses and hyperbolae, respectively, while R is the half distance between the foci and is related with 
the semi-major and semi-minor axes of the elliptical cylinder V, W respectively by R = V< − W<. The 
elliptical cylinder approximates a plate assuming  W → 0 and hence, in nondimensional form R = V →

1. The surface of the plate is determined by PX = tanh[N W V → 0. 
 
Next, Moon & Spencer (1971) show that in elliptical coordinates (2.10) is  
 

2

cosh 2P − cos 2Q

A<6G

AP<
+
A<6G

AQ<
− KG

<6G = 0. (2.13) 
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Assuming separable solutions, the component 6G(P, Q) that satisfies (2.13) is expanded in terms of 
elliptical harmonics as  
    

6G P, Q = +\
G
]R\

N
P, −^G R_\ Q, −^G

L

\MX

+ *\
G
]`\

N
P, −^G `_\ Q, −^G

L

\MN

+ a\
G
]R\

b
P, −^G R_\ Q, −^G

L

\MX

+ c\
G
]`\

b
P, −^G `_\ Q, −^G

L

\MN

. 

(2.14) 

 
where R_ and `_ denote the even and odd periodic Mathieu functions, while ]R and ]` are the even 
and odd modified (radial) Mathieu functions in the notation of Abramowitz & Stegun (1970). The 
superscript labels (1) and (3) designate the kind of the radial Mathieu functions. Finally, ^G = KG

< 4 
and it is noted that the separation constant involved in the elliptical harmonics (the so-called Mathieu 
parameter), is negative.  
 
The boundary conditions (2.3) and (2.8), expressed in terms of the expansions in elliptical harmonics 
6G(P, Q) will read  
 
6G P, −F = 6G P, 0 = 0, (2.15) 
 
6G P, Q → 0,333P → ∞. (2.16) 
 
Of the radial functions present in the expression (2.14), only the Mathieu functions of the third kind 
satisfy the far-field condition (16). Accordingly the products that involve ]R\

N  and ]`\
N  are 

omitted. In addition, the conditions (2.15) are satisfied only by the odd periodic Mathieu functions 
`_\ Q, −^G . Lastly, it is remarked that the velocity potential is defined in the half plane Q ∈ −F, 0  
and as a result only the odd terms f = 2g + 1, g = 0,1,2, … should be retained. Hence, expression 
(2.14) is simply  
  

6G P, Q = c<ijN
G

]`<ijN
b

P, −^G `_<ijN Q, −^G

L

iMX

 (2.17) 

 
where odd periodic Mathieu function can be written as 
 

`_<ijN Q, −^G = 3 *<kjN
(<ijN)

sin 2l + 1 Q

L

kMX

. (2.18) 

  
In (2.18) the constants *<kjN

(<ijN)
≡ *<kjN

<ijN
(−^G) are the expansion coefficients of the odd periodic 

Mathieu functions `_<ijN Q, −^G .  
  
The total velocity potential will read 
 

6 P, Q, 5 = c<ijN
G

]`<ijN
b

P, −^G `_<ijN Q, −^G

L

GMN

sin KG5

L

iMX

.3 (2.19) 

 
The unknown expansion coefficients c<ijN

G  are determined by applying the remaining boundary 
conditions (2.5)-(2.7). The tilde above c will be dropped in the sequel.  
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The boundary conditions (2.5)-(2.7) expressed in elliptical coordinates become  
 
A6

AP
= sin Q ,333 P = 0,333 − F < Q < 0,3330 < 5 < : , (2.20) 

 
6 = 0,333 P = 0,333 − F < Q < 0,333: < 5 < 9 , (2.21) 
 
A6

AP
= sin Q ,333 P = 0,333 − F < Q < 0,3339 < 5 < ℎ . (2.22) 

 
Next, we substitute the velocity potential from (2.19) into the boundary conditions (2.20)-(2.22) to 
obtain  
 

c<ijN
G

]`<ijN
n b

0, −^G `_<ijN Q, −^G

L

iMX

sin KG5

L

GMN

= sin Q , 0 < 5 < :,3339 < 5 < ℎ , 

(2.23) 

 

c<ijN
G

]`<ijN
b

0, −^G `_<ijN Q, −^G

L

iMX

sin KG5

L

GMN

= 0,333 : < 5 < 9 ,3 (2.24) 

 
where the prime denotes differentiation with respect to the first argument. Both (2.23) and (2.24) are 
defined in the interval −F < Q < 0. It is noted that ]`<ijN

b
P, −^G  is given by [Abramowitz & 

Stegun, 1970; equations (20.8.9) and (20.8.11)] 
 

]`<ijN
b

P, −^G =
2 −1 ijN

F
3

+<kjN
(<ijN)

+N
(<ijN)

ok PG
(N)

pkjN PG
(<)

+ okjN PG
(N)

pk PG
(<)

L

kMX

, (2.25) 

 
where o and p denote the modified Bessel functions of the first and the second kind respectively, 
PG
(N)

= ^G_
[q, PG

(<)
= ^G_

q and +<kjN
(<ijN)

≡ +<kjN
<ijN

(^G) are the expansion coefficients of the even 
periodic Mathieu functions R_<ijN. These are given by   
 

R_<ijN Q, ^G = 3 +<kjN
(<ijN)

cos 2l + 1 Q

L

kMX

, (2.26) 

  
 
and `_<ijN Q, −^G = (−1)iR_<ijN

r

<
− Q, ^G , *<kjN

<ijN
−^G = (−1)k[i+<kjN

<ijN
(^G), 

[Abramowitz & Stegun, 1970; equation (20.8.4)] 
 
 
 Letting P → 0 in (2.25) it can be shown that  
 

]`<ijN
b

0, −^G →
4 −1 ijNR_<ijN 0, ^G

FKG+N
(<ijN)

. (2.27) 

 
For the derivation of (2.27) the Wronskian determinant for Bessel functions was used [Abramowitz & 
Stegun, 1970; equation (9.6.15)]. The corresponding expression for the derivative of the radial 
Mathieu function as P → 0 is more complicated and is given by  
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]`<ijN
n b

0, −^G

→ −1 ijN
2 ^G

F+N
(<ijN)

3 +<kjN
(<ijN)

−ok
n
KG

2
pkjN

KG

2

L

kMX

+ ok
KG

2
pkjN
n

KG

2
− okjN

n
KG

2
pk

KG

2
+ okjN

KG

2
pk
n
KG

2
. 

(2.28) 

 
In the case of a solid rigid plate without the opening the body condition is described solely by (2.23) 
defined in the intervals −F < Q < 0 and 0 < 5 < ℎ. Hence, employing orthogonality of the involved 
eigenfunctions, the expansion coefficients c<ijN

G  are 
 

c<ijN
G

=
4*N

<ijN
−^G

(2O − 1)F]`n<ijN
b

0, −^G
 (2.29) 

 
and the velocity potential 6 P, Q, 5 , calculated exactly on the plate at P = 0 from (2.19) is given by  
 

6 0, Q, 5 =
4

F

*N
<ijN

−^G

2O − 1

]`<ijN
b

0, −^G

]`n<ijN
b

0, −^G
`_<ijN Q, −^G sin KG5

L

GMN

L

iMX

. (2.30) 

 

Equation (2.30) is valid unconditionally for any aspect ratio ℎ > 0. Also, (2.30) can provide the 2D 
strip theory solutions with vertical or horizontal strips assuming a very wide plate, ℎ ≪ 1, ^G → ∞, or 
a very narrow plate, ℎ ≫ 1, ^G → 0. Here we are interested in only the former case and therefore 
further analysis assuming ℎ ≫ 1 is omitted. Taking the asymptotics of the derivative of the radial 
Mathieu function for very large Mathieu parameters which implies taking the asymptotics of the 
Bessel functions (and their derivatives) for very large arguments [see also (2.28)] it can be shown that  
 

]`<ijN
n b

0, −^G →
4 −1 iR_<ijN 0, ^G

F+N
(<ijN)

. (2.31) 

 

Using (2.27) and (2.31), (2.30) becomes  

 

6 0, Q, 5 = −
8ℎ

F<
sin 2O − 1 F5(2ℎ)

2O − 1 <
*N

<ijN
−^G `_<ijN Q, −^G

L

iMX

L

GMN

. (2.32) 

 
Assuming that the term is square brackets equals an arbitrary function vG(Q), then we are able to 
apply the orthogonality relation of `_<ijN Q, −^G  for Q ∈ [−F, 0]. This gives  
 

*N
<ijN

−^G `_<ijN Q, −^G `_<\jN Q, −^G yQ

X

[r

L

iMX

= vG(Q)`_<\jN Q, −^G yQ

X

[r

. (2.33) 

 
The left hand side of (2.33) equals r

<
*N

<\jN
−^G . Hence, by comparing with (2.18) the identity 

(2.33) holds if and only if vG Q = sin Q. The 2D solution is obtained by letting Q = −
r

<
 and 

eventually (2.32) becomes  
 

6 0,−
F

2
, 5 =

8ℎ

F<
sin 2O − 1 F5/(2ℎ)

2O − 1 <

L

GMN

. (2.34) 
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Equation (2.34) is explicitly identical with the 2D strip theory solution 6 { 0, 5  provided by King & 
Needham (1994).  
 
We now revert to the actual 3D problem, which has been reduced to (2.23) and (2.24). These 
equations represent a MBVP defined only in the vertical direction. In fact, (2.23) and (2.24) represent 
a triple trigonometrical series. Analytical solutions for relevant problems are feasible only if the 
unknown expansion coefficients that multiply the trigonometrical functions are the same. Here 
however, we treat a different, and more complicated case, as the coefficients of sin KG5  in (2.23) 
depend on the derivative of the radial Mathieu function, whilst those of (2.24) depend on the Mathieu 
function itself. To address properly this challenge a more sophisticated approach should be taken, as 
described in the next section.  
 
3.! Expansion of the derivative of the radial Mathieu function in a series of 

perturbations 
 

Equation (2.28) is further elaborated using the series expansions of the modified Bessel functions that 
can be found in Abramowitz & Stegun (1970) [equations (9.7.1) – (9.7.4)]. In particular it holds that  
 

ok | ∽
_|

2F|
1 −

~ − 1

8|
+

~ − 1 ~ − 9

2! 8| <
−

~ − 1 ~ − 9 ~ − 25

3! 8| b
+ É 1 |Ñ , (3.1) 

 

pk | ∽
F

2|
_[| 1 +

~ − 1

8|
+

~ − 1 ~ − 9

2! 8| <
+

~ − 1 ~ − 9 ~ − 25

3! 8| b
+ É 1 |Ñ , (3.2) 

 

ok
n | ∽

_|

2F|
1 −

~ + 3

8|
+

~ − 1 ~ + 15

2! 8| <
−

~ − 1 ~ − 9 ~ + 35

3! 8| b
+ É 1 |Ñ , (3.3) 

 

pk
n | ∽ −

F

2|
_[| 1 +

~ + 3

8|
+

~ − 1 ~ + 15

2! 8| <
+

~ − 1 ~ − 9 ~ + 35

3! 8| b

+ É 1 |Ñ , 
(3.4) 

 
where  ~ = 4l<. Substituting (3.1)-(3.4) into (2.28) and performing lengthy algebraic manipulations, 
it can be shown that the É 1 KG  term of the component within the square brackets of (2.28) 
vanishes. Overall (2.28) can be written as  
  

]`<\jN
n b

0, −^G = −KG]`<\jN
b

0, −^G +
−1 \

8F^G+N
<\jN

2l + 1 +<kjN
<\jN

L

kMX

+ É KG
[b  (3.5) 

 
Defining ÖG = KG

[< (3.5) can be written as   

 

]`<\jN
b

0, −^G = −KG
[N]`<\jN

n b
0, −^G + ÖGKG

[NΛ<\jN
G

+ ⋯, (3.6) 
 

where we define 

Λ<\jN
(G)

=
−1 \

2F+N
(<\jN)

(2l + 1)+<kjN
(<\jN)

L

kMX

. 

 

(3.7) 
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The second term in the right had side of (3.6) is negligible only if ^G is considered sufficiently large 
allowing the employment of the asymptotic formulae of the modified Bessel functions and their 
derivatives for very large arguments. In the present physical problem, that corresponds to the case of a 
relatively wide plate with small aspect ratio. The inclusion of that term in (3.6) extends the interval of 
convergence of that equation. Clearly, if additional accuracy is required one could include the 
É 1 |b  terms in (3.1)-(3.4). The perturbation technique dictates that we must have all ÖG < 1, in 
order to be able to enhance (3.6) with terms of order equal or higher than É ÖG . In fact ÖG decreases 
to zero rapidly as O increases. Nevertheless, the requirement ÖG < 1 should be valid for all O, even the 
first one. That leads to the requirement & > <

r
'.  

  
The form obtained for the radial Mathieu function [see (3.6)] suggests taking the following expansion 
for the coefficients c<\jN

G  [see (2.23) and (2.24)]  
 
c<\jN
G

= c<\jN
G ,(X)

+ ÖGc<\jN
G ,(N)

+ ⋯. (3.8) 
 

Next, substituting (3.6) and (3.8) into (2.23) and (2.24) and equating like powers of  ÖG we obtain the 
following systems at orders É ÖG

X  and É ÖG
N : 

 
Order É ÖG

X : 
 

àG
X
(Q) sin KG5

L

GMN

= sin Q ,333 0 < 5 < :,3339 < 5 < ℎ , (3.9) 

 

O −
1

2

[N

àG
X
(Q) sin KG5

L

GMN

= 0,333 : < 5 < 9 . (3.10) 

 
Order É ÖG

N : 
 

àG
N
(Q) sin KG5

L

GMN

= 0,333 0 < 5 < :,3339 < 5 < ℎ , (3.11) 

 

O −
1

2

[N

àG
N
(Q) sin KG5

L

GMN

= â N Q, 5 ,333 : < 5 < 9 , (3.12) 

 
where 
 

àG
ä
Q = ÖG

ä
c<\jN
G ,(ä)

]`<\jN
n b

0, −^G `_<\jN Q, −^G

L

\MX

,333ã = 0,1 (3.13) 

 
and  
 

â N Q, 5 =
ℎ<

F<
O −

1

2

[b

−1 \c<\jN
G ,(X)

Λ<\jN
(G)

R_<\jN
F

2
− Q, ^G

L

\MX

sin KG5

L

GMN

. (3.14) 

 
The two orders of ÖG will be referred in the sequel as the leading order and the first-order. Clearly, the 
solution of the first-order problem (3.11)-(3.12) dictates the solution of the problem at leading order 
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(3.9)-(3.10). Both problems can be treated in a similar fashion. They are in fact single-dimensional 
boundary value problems of mixed type, involving triple trigonometrical series.  
 
For the leading order problem it is observed that the MBVP of (3.9) and (3.10) suggests assuming that 
the unknown expansion coefficients àG

X
(Q) are directly proportional to sin Q, and be written as 

àG
X
Q = àG

X
sin Q, where àG

X  are constants. Therefore the solution of the associated triple 
trigonometrical series will provide sets of coefficients, not functions of Q.3Those functions are simply 
obtained by the direct multiplication of the leading order constant expansion coefficients by sin Q. 
Nevertheless, here we have chosen to follow a global notation for both triple trigonometrical series 
problems (at the leading and the first-order). Hence, the analysis that is conducted in the following 
will concern àG

X
Q  as general functions of Q.  

 
4.! Mixed boundary value problems involving triple trigonometrical series 
 
Although mixed boundary value problems leading to dual trigonometrical series are well treated in the 
literature, there are only a few studies on triple trigonometrical series. The first solution to dual series 
was given by Shepherd (1938). Analytical solutions have been given by Tranter (1959), (1960a) and 
(1964). Srivastav (1963) showed that certain dual trigonometrical relations can be reduced to a 
Fredholm integral equation of the second kind and, under specific conditions, can admit closed form 
solutions.  
 
Studies approaching the analytic solution of triple trigonometrical series are scarce. For example the 
classic book of Sneddon (1966) has references only on dual series, the book of Fabrikant (1991) 
doesn’t mention dual or triple trigonometrical series, while the last book on the subject by Duffy 
(2008), has only one specific example on sine series. Examples on triple trigonometrical series are the 
studies of Tranter (1969) and Kerr et al. (1994). Tranter (1969) showed that the solution of triple 
trigonometrical series can be sought by solving an equivalent system of three integral equations. 
Tranter’s (1969) work however is incomplete because although he considered both sine and cosine 
series involving harmonics sin O − 1 2 å  and cos O − 1 2 å , 0 ≤ å ≤ F, he did not consider 
the case when the argument O − 1 2  that multiplies the expansion coefficients is reversed. In fact, 
this is exactly the case that should be treated herein.  
 
We start by considering the leading order problem of (3.9) and (3.10) and we employ the following 
transformations: ç = F5 ℎ , :N = F: ℎ and 9N = F9 ℎ. Further, making use of the orthogonality of 
sin O − 1 2 ç , we approximate sin Q by  
 

sin Q = sin Q
2

F
O − 1 2 [N sin O − 1 2 ç

L

GMN

. (4.1) 

 
We now define  
 

éG
X
Q = àG

X
Q −

2

F
O − 1 2 [N sin Q, (4.2) 

 
and (3.9) and (3.10) are recast into 
 

éG
X
(Q) sin O − 1 2 ç

L

GMN

= 0,333 0 < ç < :N,3339N < ç < F , (4.3) 

 

O −
1

2

[N

éG
X
(Q) sin O − 1 2 ç

L

GMN

= â X Q, ç ,333 :N < ç < 9N , (4.4) 
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with 
 

â X Q, ç = −
2

F
sin Q

sin O − 1 2 ç

O − 1 2 <

L

GMN

. (4.5) 

 
We choose to use a uniform expression for both â X Q, ç  and â N Q, ç  writing them as  
  

â ä Q, ç = −
2

F
èG

ä
Q sin O − 1 2 ç

L

GMN

,333ã = 0,1, (4.6) 

 
where  
 
èG

X
Q = O − 1 2 < sin Q (4.7) 

 
and using (48) 
 

èG
N
Q = −

ℎ<

2F
O −

1

2

[b

−1 \c<\jN
G ,(X)

Λ<\jN
(G)

R_<\jN
F

2
− Q, ^G

L

\MX

. (4.8) 

 
With these remarks we realize that the first-order problem is reduced to exactly the same form as the 
leading order problem, described through (4.3) and (4.4), after replacing the index (0) by the index 
(1), using éG

N
Q = àG

N
Q  and taking  â N (Q, 5) ≡ â N (Q, ç) from (4.6), (4.8).   

 
5.! Transformation of the trigonometrical series into a system of integral equations 
 
Following the work of Williams (1963), the idea of solving MBVPs involving triple trigonometrical 
series through transformation into integral equations was inspired by Tranter (1969). However, 
Tranter (1969) considered only cases where in the intermediate interval, here indicated by :N < ç <
9N, the multipliers of trigonometrical functions (both sine and cosine) have the form O − 1 2 éG. 
Although that seems insignificant, it literally introduces a major differentiation without allowing the 
employment of Tranter’s (1969) method that was based on the Jacobi’s expansion in a series of Bessel 
coefficients (Watson, 1944; p. 22).  
 
To reform the triple trigonometrical series (4.3)-(4.4) into a system of triple integral equations we 
initial employ the transformation ê = sin ç 2 , ç = 2 sin[N(ê) and we use the following useful 
relations that can be found in Gradshteyn & Ryzhik (2007), p. 717 and 727:  
 

sin 2O − 1 sin[N(ê) = 1 − ê< ë<G[N í sin(êí) yí

L

X

, (5.1) 

 
1

2O − 1
sin 2O − 1 sin[N(ê) = í[Në<G[N í sin(êí) yí

L

X

. (5.2) 

 
 Using (5.1) and (5.2), the system of (4.3) and (4.4) yields for ã = 0,1, 
 

éG
(ä)
(Q) ë<G[N í sin(êí) yí

L

X

L

GMN

= 0,333 0 < ê < :<,3339< < ê , (5.3) 
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éG
(ä)
(Q) í[Në<G[N í sin(êí) yí

L

X

L

GMN

=
1

2
â(ä) Q, 2 sin[N ê ,333 :< < ê < 9< , (5.4) 

 
where 9< = sin 9N 2  and :< = sin :N 2 .  
 
Accordingly, using [Abramowitz & Stegun, 1970; equations (10.1.1) and (10.1.11)]  
 

sin(êí) =
Fêí

2
ëì êí ,333~ =

1

2
 (5.5) 

 
and assuming  
 

é(ä) Q, í = éG
(ä)
(Q)ë<G[N í

L

GMN

, (5.6) 

 
the system of (5.3) and (5.4) finally becomes  
 

íN <é(ä)(Q, í)ëì êí yí

L

X

= 0,333 0 < ê < :<,3339< < ê , (5.7) 

 

í[N <é(ä)(Q, í)ëì êí yí

L

X

=
1

2

2

Fê
â(ä) Q, 2 sin[N ê ,333 :< < ê < 9< . (5.8) 

 
The system of (5.7) and (5.8) is usually referred in the literature as system of Titchmarsh type 
(Titchmarsh, 1948).  
 
6.! Solution of the triple integral equations 
 
Systems alike (5.7) and (5.8) are usually processed by attempting to satisfy by default one of the 
involved equations in a specific interval and substituting subsequently the assumed solution to the 
remaining relations. The procedure that is followed in the present exploits the following integral 
relation 
 

í[îëìj<G[Njî 9<í ëì êí yí

L

X

= 0,333 9< < ê , (6.1) 

 
for ï = ±

N

<
 and O = 1,2,3, …. 

 
For3ê < 9< the integral yields nonzero values and in particular  
 

íîëìj<G[Njî 9<í ëì êí yí

L

X

=
2îêìΓ(O + ~ + ï)

9<
ìjNjî

Γ(~ + 1)Γ(O)
óN< O + ~ + ï, −O + 1; ~ + 1;

ê<

9<
< , 

(6.2) 
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í[îëìj<G[Njî 9<í ëì êí yí

L

X

=
2[îêìΓ(O + ~)

9<
ìjN[î

Γ(~ + 1)Γ(O + ï)
óN< O + ~, −O + 1 − ï; ~ + 1;

ê<

9<
<

=

2[îêìΓ(O + ~) 1 −
ê<

9<
<

î

9<
ìjN[î

Γ(~ + 1)Γ(O + ï)
óN< −O + 1, O + ~ + ï; ~ + 1;

ê<

9<
< , 

(6.3) 

 
where óN<  denotes the hypergeometric function. The integral that appears in (6.2)-(6.3) is known as 
the Sonine-Schafheitlin integral [Gradshteyn & Ryzhik, 2007; p. 683, equations (6.574.1) and 
(6.574.3); Watson, 1944, p. 401, equation (2); Tranter, 1969]. The convergence of the integrals in 
(6.2)-(6.3) requires that Re ~ > −1 when ï = N

<
 and Re ~ > −

N

<
 when ï = −

N

<
. These conditions 

are satisfied by default herein as ~ = N

<
.  

 
Accordingly we assume the following form for the unknown function é(ä) Q, í :  
 

é(ä) Q, í = yG
(ä)
(Q)ëìj<G[Njî 9<í

L

GMN

, (6.4) 

 
while we let ï = −

N

<
. Hence, substituting (6.4) into (5.7) and rearranging the summation and the 

integration the following is obtained  
 

yG
(ä)
(Q) í[îëìj<G[Njî 9<í ëì êí yí

L

X

L

GMN

= 0, (6.5) 

 
which holds true for 9< < ê due to (6.1). Thus, we have satisfied one of the three integral equations 
and in particular the one which should be valid for 9< < ê.  Accordingly, (6.4) is substituted into the 
remaining two integral equations of (5.7) and (5.8). By exploiting (6.2) and (6.3) for  ê < 9< and 
performing some brief algebraic calculations the following are derived:  
 

O − 1 2 yG
(ä)
(Q) óN< O +

1

2
, 2 − O +

1

2
;
3

2
; sin<å

L

GMN

= 0,333 0 < å <
:<

9<
, (6.6) 

 

yG
(ä)
(Q) óN< O, 1 − O;

3

2
; sin<å

L

GMN

=
1

2 sin å
â(ä) Q, 2 sin[N 9< sin å ,333

:<

9<
< å <

F

2
, (6.7) 

 
where we used  ê = 9< sin å. Equations (6.6) and (6.7) can be simplified significantly by expressing 
the hypergeometric functions in terms of sinusoidal harmonics [see equations (15.1.15) and (15.1.16) 
in Abramowitz & Stegun, 1970]. In order to increase the interval, in which the independent variable is 
defined, to [0, F] we let å = õ 2. Assuming also that O − 1 2 [NyG

(ä)
(Q) = RG

(ä)
(Q), (6.6) and (6.7) 

finally become  
 

O − 1 2 RG
(ä)
(Q) sin O − 1 2 õ = 0

L

GMN

= 0,333 0 < õ < y∗ , (6.8) 
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RG
(ä)
(Q) sin O − 1 2 õ

L

GMN

= â(ä) Q, 2 sin[N 9< sin õ 2 ,333 y∗ < õ < F , (6.9) 

 
where  y∗ = 2 :< 9<.  
 
7.! Solution of the dual trigonometrical series 
 
7.1 Computation of the expansion coefficients of the dual trigonometrical series 
 
Equations (6.8) and (6.9) form a one-dimensional MBVP that involves dual trigonometrical series. 
Systems of that kind are well treated in the literature and there have been several authors who 
provided proper solutions. For a summary the reader is referred to the classical book of Sneddon 
(1966). However, it should be mentioned that the suggested solutions were derived without being 
complemented by numerical computations. The solution provided in Sneddon (1966) for instance, 
although accurate, does not allow efficient numerical performance as it requires the computation of 
the derivative of an integral for which no analytical solution exists and accordingly the only feasible 
way is to elaborate numerically. This type of complications however are prone to numerical 
inaccuracies and accordingly the system of (6.8) and (6.9) is processed further using the methodology 
suggested by Tranter (1969).  
 
By employing the transformations   
 

ù = F − y∗; 3õ = F − û;3 −1 G[NRG
(ä)
(Q) O − 1 2 = `G

(ä)
(Q) 

 
the system of (6.8) and (6.9) yields  
 

`G
(ä)
(Q)

2O + 1
cos O + 1 2 û

L

GMX

=
1

2
â(ä) Q, 2 sin[N 9< cos û 2 ,333 0 < û < ù , (7.1) 

 

`G
(ä)
(Q) cos O + 1 2 û = 0

L

GMX

,333 ù < û < F . (7.2) 

 
The system of (7.1) and (7.2) has been considered by Tranter (1960b) who found an appropriate way 
to employ Mehler’s integrals (Magnus & Oberhettinger, 1949; p. 52). The solution provided (adapted 
in the present system) relies on the following recurrence relation for the computation of the expansion 
coefficients `G

(ä)
(Q):  

 

`G
(ä)

Q = `X
(ä)

Q üG cos ù − ó(ä) Q, í üG
n cos í sin í yí

†

X

, O = 1,2,3, … (7.3) 

 
The remaining coefficient  `X

(ä)
Q  is found by substitution of (7.3) into (7.1) for any value in the 

corresponding interval. For simplicity, this is chosen to be û = 0.3Hence  
 

`X
ä
Q =

1

2
â(ä) Q, 2 sin[N(9<) + 2O + 1 [N ó(ä) Q, í üG

n cos í sin í yí

†

X

L

GMN

/ 1 + 2O + 1 [NüG cos ù

L

GMN

, 

(7.4) 
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and the coefficients `G
(ä)

Q , O = 1,2,3, … are obtained by the recurrence relation (7.3). 
 
In (7.3)-(7.4), üG denotes the Legendre polynomial with degree O and the prime denotes 
differentiation with respect to the argument. The derivative of the Legendre polynomials can be 
determined by the summation theorem (Gradshteyn & Ryzhik, 2007, p. 986) 
 

üG
n ° = 2O − 4l − 1 üG[<k[N °

G[N
<

kMX

, (7.5) 

 

°üG
n ° − OüG ° = 2O − 4l − 3 üG[<k[< °

G[<
<

kMX

, (7.6) 

 
where ° can be any complex number.  
 
The function ó(ä) Q, í  involved in (7.3)-(7.4) is given by the elliptic integral 
 

ó(ä) Q, í =
2

F

yâ(ä) Q, 2 sin[N 9< cos û 2 yû

cosû − cos í
sin û yû

¢

X

, (7.7) 

 
or by evaluating the derivative  
  
ó ä Q, í = 

2 2

F<
9< O −

1

2
èG

ä
Q

sin û sin û 2 cos (2O − 1) sin[N 9< cos û 2

1 − 9<
<cos< û 2 cosû − cos í

¢

X

L

GMN

yû. 
(7.8) 

 
Although, the integral in (7.8) looks relatively complicated, does not pose major difficulties in its 
numerical computation. In any event, it should be treated as an improper integral. As already 
mentioned, the solution at order É ÖG

N  requires the solution at the leading order É ÖG
X . In other 

words, one must obtain the original expansion coefficients c<\jN
G , X . Therefore the reversed procedure 

must be applied all the way to the very beginning to calculate the original expansion coefficients 
c<\jN
G ,(X). Nevertheless, this is not a simple straightforward process.  

 
7.2 The reverse procedure 
 
The reverse procedure could be applied at both orders É ÖG

X  and É ÖG
N  to obtain the original 

coefficients of the Mathieu series expansions  c<\jN
G ,(ä), ã = 0,1. Nevertheless, as it is discussed in the 

sequel, the computation of the leading order potential can be obtained directly through `G
(X)

Q , 
without the need to compute c<\jN

G ,(X). The latter however are required for the triple trigonometrical 
series problem at É ÖG

N  due to the form of â N Q, ç  given by (4.6) and (4.8).  
 
The reverse procedure requires to start from `G

(ä)
Q  and calculate sequentially RG

(ä)
Q , yG

(ä)
Q , 

éG
(ä)

Q , àG
(ä)

Q  and finally  c<\jN
G ,(ä) through (3.13). Let us assume for the moment that we have been 

able to obtain àG
(ä)

Q . Then the derivation of c<\jN
G ,(ä) requires the employment of the orthogonality 

relation satisfied by the periodic Mathieu functions in (3.13). It is noted that `_<\jN Q, −^G  (as well 
as the even periodic Mathieu functions) are orthogonal in both Q ∈ −F, 0  and Q ∈ 0,2F . The 
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orthogonality constants are equal to F 2 and F respectively [Abramowitz & Stegun, 1970; equation 
(20.5.3)]. Thus from (3.13) one gets for ã = 0,1, 
 

c<\jN
G ,(ä)

=
1

FÖG
ä
]`<\jN

n b
0, −^G

àG
ä
(Q)`_<\jN Q, −^G yQ

<r

X

=
(−1)\

FÖG
ä
]`<\jN

n b
0, −^G

àG
ä
(Q)R_<\jN F 2 − Q, −^G yQ

<r

X

. 

(7.9) 

 
As already remarked in Section 3 the leading order coefficients àG

X
(Q) [as well as all the leading 

order coefficients defined in the present: `G
(X)

Q , RG
(X)

Q , yG
(X)

Q , éG
(X)

Q ] are directly proportional 
to sin Q3and can be written as àG

X
Q = àG

X
sin Q3, where àG

X  are constants and they are literally the 
coefficients calculated by the outlined procedure. Hence it is easily deduced that  
 

c<\jN
G ,(X)

=
(−1)\+N

<\jN
(^G)àG

X

]`<\jN
n b

0, −^G
. (7.10) 

 
The problem in the reversed procedure originates from the transformation of the trigonometrical series 
into integral equations. The turning point is (5.6) which together with (6.4) provide the identity  
 

éG
(ä)
(Q)ë<G[N í

L

GMN

= yG
(ä)
(Q)ëìj<G[Njî 9<í

L

GMN

. (7.11) 

 
Assuming that the last coefficients we have calculated are those of the dual trigonometrical series 
(7.1) and (7.2), then we can easily see that yG

ä
Q = (−1)G[N`G

(ä)
(Q). However, there is no 

straightforward procedure to obtain éG
(ä)
(Q) through yG

(ä)
(Q) using (7.11) and apparently the latter 

must be processed further.  
 
Thus, we use again ê = sin ç 2 , ç = 2 sin[N(ê), 0 ≤ ê ≤ 1, 0 ≤ ç ≤ F and we multiply both 
sides of (7.11) by sin êí . Accordingly we integrate in the semi-infinite interval [0,∞) to obtain  
 

éG
(ä)
(Q) ë<G[N í sin(êí) yí

L

X

L

GMN

= yG
(ä)
(Q) ë<G[N 9<í sin(êí)

L

X

L

GMN

. (7.12) 

 
Note that ~ = N

<
 and ï = −

N

<
. We define  ℐ<G[N ê = ë<G[N 9<í sin(êí) yí

L

X
 which is calculated 

by [Gradshteyn & Ryzhik, 2007; equation (6.6.71), p.17] 
 

ℐ<G[N ê =

sin (2O − 1) sin[N
ê
9<

9<
< − ê<

,33333333333333333ê < 9<33

0,3333333333333333333333333333333333333333333333333333333333333ê = 9<
9<
<G[N cos O − 1 2 F

ê< − 9<
< ê + ê< − 9<

<
<G[N ,333ê > 9<

 (7.13) 

 
Equation (7.13) implies that ℐ<G[N ê = 0 for ê ≥ 9<. It can also be employed using 9< = 1. 
Therefore (7.11) yields  
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éG
ä
Q sin O − 1 2 3ç

L

GMN

= yG
(ä)
(Q)

sin (2O − 1) sin[N
sin ç 2

9<
cos ç 2

9<
< − sin< ç 2

L

GMN

. (7.14) 

 
The derivation of (7.14) allows the employment of the orthogonality relation of sin O − 1 2 3ç  in 
0 ≤ ç ≤ F. Therefore the expansion coefficients éG

ä
Q  will yield from yG

(ä)
(Q) through  

 
éG

ä
Q

=
2

F
yG
(ä)
(Q)

sin (2O − 1) sin[N
sin ç 2

9<
cos ç 2 sin O −

1
2
ç

9<
< − sin< ç 2

<•¶ß®© ™´

X

L

GMN

yç. 
(7.15) 

 
Having calculated éG

ä
Q , the coefficients àG

X
Q  will be given by (4.2), àG

N
Q = éG

N
Q , while 

the original expansion coefficients will be obtained using (3.13).  
 
8.! Velocity potential and pressure-impulse  
 
8.1! The velocity potential 

 
The method of perturbations suggests taking the following form for the total velocity potential, 
calculated exactly on the surface of the plate for P = 0 
 
6 0, Q, 5 = 6(X) 0, Q, 5 + 6(N) 0, Q, 5 + ⋯ (8.1) 
 
Accordingly, use of (2.19), (3.6) and (3.8) requires that   
 

6(X) 0, Q, 5 = − KG
[Nc<\jN

G , X
]`<\jN

n b
0, −^G `_<\jN Q, −^G

L

GMN

sin KG5

L

\MX

, (8.2) 

 
 
6 N 0, Q, 5 = 

− ÖGKG
[N c<\jN

G , N
]`<\jN

n b
0, −^G − c<\jN

G , X
Λ<\jN
G

`_<\jN Q, −^G

L

GMN

sin KG5

L

\MX

. (8.3) 

 
The above are valid in the intervals 30 < 5 < :, 9 < 5 < ℎ, while the potentials should be zero in the 
intermediate interval : < 5 < 9. As a means for validating the present complicated method, we 
should verify that the potentials are indeed zero at the limiting points 5 = 9, 5 = :. The curves of the 
potentials should be smooth and they should ‘close’ at the above mentioned limiting points.  
 
The numerical implementation of the theory outlined in the present requires some attention as regards 
the value of the aspect ratio ℎ which in any case should be smaller than r

<
. This can be traced back to 

the fact that the derivative of the radial Mathieu function was expanded in a series of perturbations 
and we retained only the leading order and the first-order terms of the series [see (3.6)]. Therefore for 
1 < ℎ <

r

<
 additional terms in the series of perturbations might be required. Here, we present 

numerical results for two sufficiently small aspect ratios, ℎ = 0.5 and ℎ = 0.8 which accordingly 
ensure that all ÖG, O = 1,2,3,… are sufficiently small allowing the approximation of the problem’s 
parameters by the two only terms of the perturbation expansion.  
 
It is frequently stated that 3D effects in 3D impact problems are important close to the contact line 
between the body and the liquid. In the present case, it is anticipated that 3D effects will be important 
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close to the edges of the plate at 4 = ±1. Relevant allegations are usually provided without 
justification on the variation of the 3D effects near to the contact line. The question which easily 
arises is whether the 3D effects are indeed important close to the plate’s edges and literarily 
insignificant in the plate’s vertical centreline. Also, given the fact that the potential is zero at the 
plate’s edges, an additional question concerns the sections of the plate in which 3D effects are 
significant.  
 
The solution provided by (2.34) is easily reproduced by the leading order potential (8.2) (for 4 = 0 or 
Q = −F 2) as shown in Fig. 2. To obtain the results of (2.34) through (8.2) we assumed an 
infinitesimal opening very close to the top of the plate, near the upper free-surface. Also, Fig. 2 
depicts the velocity potential in the middle of the plate for a very small open area that was chosen to 
exist near the half of the plate’s impacted height. The results are extremely interesting as they imply 
that if we allow the discharge of the liquid through a very small window, the velocity potential, and 
accordingly the pressure-impulse, on the two solid subsections are reduced substantially. The reason 
is that the velocity potential is forced to become zero at the horizontal edges of the open area. This 
finding has obvious significance for the design of coastal and offshore structures.  
 

 
 
 

FIG. 2 The 2D strip theory solution (continuous curves) compared with 3D solution (symbols): ℎ =
' & = 0.5. For solving the MBVP it was assumed 9 ℎ = 0.001, : ℎ = 0.0001. The second case 

considered corresponds to a wave impact on a plate with an open area situated in 0.45ℎ < 5 < 0.5ℎ 
 
 
Figs. 3 and 4 show the behaviour of the velocity potential at the leading order and at the plate’s centre 
line 4 = 0, for a constant upper and lower edge respectively and increasing open area. The 2D 
solution (2.34) is also shown as a reference. At the lower part of the plate the potential obtains its 
maximum at the bottom and progressively decreases to zero at the first horizontal edge from the 
bottom. In contrast, at the upper part of the plate the potential exhibits a parabolic behaviour having 
the maximum value nearly in the middle of the upper part. Both figures show that the increase of the 
opening leads to a drastic decrease of the magnitudes of the velocity potential. In the part of the plate 
that maintains a constant height, the decrease of the potential appears not to be influenced by the 
surface of the opening.  
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The cases considered in Figs. 3 and 4 correspond explicitly to the middle of the plate. The 3D 
potential varies transversely (along 4, or Q) until it becomes zero at the plate’s lateral edges. In fact 
the leading order potential 6 X (0, 4, 5) varies proportionally with sin Q. This is better shown in the 
contour plots of Figs. 5-8 where the opening, in which the potential is zero, is immediately visible. All 
contour plots shown in the sequel depict the half-width of the plate due to symmetry. The axes lengths 
correspond to the aspect ratio ℎ being considered. As far as the leading order potential is concerned, 
the 3D effects are explicitly described by the sinusoidal reduction from Q = −F 2 to Q = 0 (and Q =
−F). The pairs of Figs. 5-6 and 7-8 show that, overall, the magnitude of the velocity potential 
increases for increasing aspect ratio ℎ even though the normalized height and the position of the 
opening remain the same. The maxima of the leading order potential occur along the centreline of the 
contact region for 4 = 0. On the lower section the maxima are detected on the bottom, while on the 
upper section the strongest effect occurs close to its middle (with a very small shift towards the 
bottom).  
 
 
We now discuss the leading order potential computed for several cases. From figs. 5-8 we conclude 
that reducing the width of the gap increases the local maxima in potential on the upper and the lower 
sections of the plate. The increase in potential is associated with increased gradient in 6, especial at 
the edges of the plate section. These consequences suggest a higher fluid velocity, after impact, in the 
gap near its upper and lower boundaries. Comparing Figs. 5, 7 and 6, 8 it is easily deduced that 
allowing larger volume of liquid to pass through the opening on the plate, results in reduced impact 
effects, quantified by the velocity potential. The results due to the impact are mitigated not only 
because the contact region is reduced, but also because the velocity potential is decreased accordingly. 
An additional characteristic of the leading order potential, which should be highlighted, is related to 
its smooth variation in both directions (4, 5). By contrast, the first-order component of the potential is 
much more complicated and we discuss this next.  

 
 
FIG. 3 The leading order potential 6 X (0,0, 5) for a fixed upper edge : ℎ = 0.5 and variable position 

of the lower edge 9/ℎ. The aspect ratio of the plate is ℎ = ' & = 0.5. 
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FIG. 4 The leading order potential 6 X (0,0, 5) for a fixed lower edge 9 ℎ = 0.5 and variable position 

of the upper edge :/ℎ. The aspect ratio of the plate is ℎ = ' & = 0.5. 
 

 

 
FIG. 5 The leading order potential 6 X (0, 4, 5) for lower edge 9 ℎ = 0.7 and upper edge : ℎ = 0.4. 

The aspect ratio of the plate is ℎ = ' & = 0.5. 
 
 

22!
!

 
FIG. 6 The leading order potential 6 X (0, 4, 5) for lower edge 9 ℎ = 0.7 and upper edge : ℎ = 0.4. 

The aspect ratio of the plate is ℎ = ' & = 0.8. 

 
FIG. 7 The leading order potential 6 X (0, 4, 5) for lower edge 9 ℎ = 0.6 and upper edge : ℎ = 0.5. 

The aspect ratio of the plate is ℎ = ' & = 0.5. 
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FIG. 8 The leading order potential 6 X (0, 4, 5) for lower edge 9 ℎ = 0.6 and upper edge : ℎ = 0.5. 

The aspect ratio of the plate is ℎ = ' & = 0.8. 
 
 

The first-order potential is shown in Figs. 9-13. The aspect ratios, the dimensions and the locations of 
the open areas are defined in the figure captions. The cases examined in the contour plots of Figs. 10-
13 are the same as those depicted in Figs. 5-8. As far as the first-order problem is concerned it is 
immediately apparent that the velocity potential does not comply with an explicit rule as regards its 
variation in the transverse direction 4. Clearly the potential is zero throughout the surface of the open 
area as well as at the vertical edges of the plate. Figs. 9 depicts snapshots of the potential in both solid 
sections of the plate in 41 equally spaced points between −1 ≤ 4 ≤ 1. The first-order component 
exhibits vertically a type of parabolic variation on the upper solid section while in the lower section 
the potential starts from a maximum at the flat bottom and progressively decays up to the first 
horizontal edge from the bottom. The types of variations in 4 (or in Q) cannot be explicitly defined as 
they are incorporated into the expansion coefficients of the triple trigonometrical series (and 
accordingly into the expansion coefficients of the integral equations).     
 
The behaviour of the first-order velocity potential is better shown in the contour plots of Figs. 10-13. 
It is interesting to observe that the first-order component (which describes explicitly 3D effects) is 
nearly zero at the centreline of the plate in both solid sections of it. It is reminded that the leading 
order component has maxima on the centreline. Widening the gap causes a decrease of potential in 
both sections, while for larger aspect ratios the magnitudes of the potential are increased. The most 
interesting characteristic of the first-order component is that the maximum potential occurs far from 
the centre line and close to the vertical edges. The positions of maxima on either side of 4 = 0, are the 
same for both solid sections and are detected at about 4 = ±0.7. Those findings clearly characterise 
the impact of the 3D effects. Indeed, those are important near the edges of the plate having some 
distance from them which secure the smooth reduction of the potential towards the vertical edges. For 
the higher aspect ratio case, the 3D effects due to the first-order potential appear to be more 
concentrated. In any event, the values of 6 N (0, 4, 5) are much smaller than 6 X (0, 4, 5) meaning 
that, as expected, the phenomenon is dominated by the leading order term. !
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FIG. 9 The first-order potential 6 N (0, 4, 5) for lower edge 9 ℎ = 0.7 and upper edge : ℎ = 0.4. The 

aspect ratio of the plate is ℎ = ' & = 0.8. 
 

 
FIG. 10 The first-order potential 6 N (0, 4, 5) for lower edge 9 ℎ = 0.7 and upper edge : ℎ = 0.4. 

The aspect ratio of the plate is ℎ = ' & = 0.5. 
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FIG. 11 The first-order potential 6 N (0, 4, 5) for lower edge 9 ℎ = 0.7 and upper edge : ℎ = 0.4. 

The aspect ratio of the plate is ℎ = ' & = 0.8. 
 

 
FIG. 12 The leading order potential 6 N (0, 4, 5) for lower edge 9 ℎ = 0.6 and upper edge : ℎ = 0.5. 

The aspect ratio of the plate is ℎ = ' & = 0.5. 
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FIG. 13 The leading order potential 6 N (0, 4, 5) for lower edge 9 ℎ = 0.6 and upper edge : ℎ = 0.5. 

The aspect ratio of the plate is ℎ = ' & = 0.8. 
 

8.2! Pressure-impulse 
 
The phenomenon of hydrodynamic impact which involves a brief collision between a volume of 
liquid and a rigid body is better quantified by the so-called Pressure-Impulse, which is calculated by 
the short-lived pressures generated by the impact. According to Bagnold (1939), the pressure-impulse 
is approximately constant (among repetitions of waves) at a fixed point on the impacted wall, 
although the peak pressures change unpredictably from any one impact to the next. Also, in contrast 
to the unpredictable behaviour of the peak pressures the pressure-impulse is well behaved, and 
accordingly is a better mathematical and physical quantity to model the impact phenomenon than the 
peak pressures (Richert, 1968).  
 
Pressure-impulse has been mainly used to model flows induced instantaneously from rest, e.g. the 
impact of a rigid body striking the surface of still water (Batchelor, 1973; Cointe & Armand, 1987; 
Cointe, 1989; Howison et al., 1991; Wagner, 1932). Pressure-impulse theory, applied to the changes 
in a moving liquid domain that collides with a fixed structure, was introduced by Cooker and 
Peregrine (1995). Lamb (1932) defines the pressure-impulse as   
 

ü !, (, ) = ï !, (, ), í yí

≠¢

X

, (8.4) 

 
where the pressure ï !, (, ), í = −ÆΦ¢ !, (, ), í , Æ is the water density and Δí is the short duration 
of the impact. Accordingly, ü !, (, ) = −ÆΦ !, (, ) , where Φ !, (, )  is the change in the 
velocity potential induced by the impact. The total impulse is thus obtained by integrating the 
impulsive pressures oven the total impacted area at ! = 0. Here, the total impulse, in normalized 
form, is given by  
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o(ℎ) = − 6 0, 4, 5 y4y5

N

[N

±

X

. (8.5) 

 

where3o(ℎ) also depends on the parameters 9 and :.  

The scale of the total impulse is3Æ7&b. The split in the potential suggests the split of the total impulse 
as well. Thus substituting (8.2) and (8.3) into (8.5) and performing the integrations we obtain the 
following expressions of the total impulse in the leading and the first-order:  
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Results for the total impulse for ℎ = 0.5 and 0.8 are shown in Figs. 14 and 15. Each figure contains 
both orders, while the total impulses are depicted as functions of :/ℎ for several values of 9/ℎ. The 
impulse at leading order is decreased from small to large openings. The decrease however is relatively 
smooth following a curved path while the total impulse at leading order tends to an asymptotic 
constant as the height of the upper section obtains very small values.  
 
The first-order component of the total impulse is more interesting. It starts from zero for wide 
openings while for the small aspect ratio case exhibits a maximum which however does not coincide 
with the case of narrow opening. For the large aspect ratio case, that maximum disappears. 
Nevertheless, the first-order total impulse is decreased as the opening practically vanishes. In this 
specific case the total impulse becomes negative. Finally, it can be safely concluded that the leading 
order total impulse is the dominant component as the first-order counterpart is literarily negligible 
compared to the former.  
 
9.! Conclusions  
 
This study dealt with the 3D hydrodynamic impact problem on a vertical plate with a rectangular 
opening due to the impact of a steep wave. The solution method employed linear potential theory 
while the hydrodynamic problem was formulated as a boundary value problem of mixed type. The 
model equations defined two MBVPs the two directions of the plate. The first MBVP was tackled 
assimilating the plate as a degenerate elliptical cylinder with negligible semi-minor axis. That allows 
the explicit satisfaction of the Dirichlet conditions of the change in the velocity potential (due to the 
brief impact) beyond the edges of the plate in the horizontal direction. Accordingly, the Neumann and 
the Dirichlet conditions on the solid parts of the plate and its opening, respectively, defined a new 
MBVP in the vertical direction involving triple trigonometrical series.  
 
To achieve a solution for the latter MBVP, initially a perturbations technique was employed that 
defined components at various orders. The modified triple trigonometrical series MBVP was treated 
using a novel methodology that determined expressions in the form of triple integral equations. The 
sought solution was achieved by reducing the triple integral equations into dual trigonometrical series.  
 
We presented results for the velocity potential that concerned both the leading order and the first-
order components. As expected, the former was found to be much larger than the latter. The dominant 
leading order velocity potentials exhibited smooth variations both horizontally and vertically. It was 
also found that the existence of an opening along the plate’s height, even very small, results in a 
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drastic reduction of the change in the velocity potential due to the hydrodynamic impact. The increase 
in the plate’s aspect ratio leads to the increase in the magnitude of the potential. The contour lines of 
the velocity potential were found to be elliptical in the upper solid section of the plate while their 
geometry on the lower section resembles half-ellipses. The maxima of the leading order component 
were always occurred along the plate’s centreline. In contrast, the first-order potential that is 
dominated by the 3D effects was zero on the centreline and its maxima were concentrated close to the 
edges of the plate in the form of concentric circles on the upper solid section and semi-circles in the 
lower section.    
 
Finally, pressure impulse theory was employed to evaluate the pressure impulse due to the change in 
the potential at the instant of impact. In connection with pressure impulse, it was found that the 
leading order pressure impulse is reduced by widening the opening, following however a curved path. 
In contrast, the significantly smaller first-order pressure impulse exhibits a complicated variation, 
while for very small openings becomes negative.  
 

 
FIG. 14 Total impulses o(X) and o(N)as functions of :/ℎ for several values of 9/ℎ. The aspect ratio of 
the plate is ℎ = ' & = 0.5. For display purposes the total impulse at first-order has been multiplied 

by 50.  
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FIG. 15 Total impulses o(X) and o(N)as functions of :/ℎ for several values of 9/ℎ. The aspect ratio of 
the plate is ℎ = ' & = 0.8. For display purposes the total impulse at first-order has been multiplied 

by 20.  
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