638 research outputs found

    Classifying and monitoring water quality by use of satellite imagery

    Get PDF
    A technique in which LANDSAT measurements from very clear lakes are subtracted from measurements from other lakes in order to remove atmospheric and surface noise effects to obtain a residual signal dependent only on the material suspended in the water is described. This residual signal is used by the Multispectral Data Analysis System as a basis for producing color categorized imagery showing lakes by type and concentration of suspended material. Several hundred lakes in the Madison and Spooner, Wisconsin area were categorized for tannin or non-tannin waters and for the degree of algae, silt, weeds, and bottom effects

    Distinct roles in autophagy and importance in infectivity of the two ATG4 cysteine peptidases of leishmania major

    Get PDF
    Macroautophagy in Leishmania, which is important for the cellular remodeling required during differentiation, relies upon the hydrolytic activity of two ATG4 cysteine peptidases (ATG4.1 and ATG4.2). We have investigated the individual contributions of each ATG4 to Leishmania major by generating individual gene deletion mutants (Δatg4.1 and Δatg4.2); double mutants could not be generated, indicating that ATG4 activity is required for parasite viability. Both mutants were viable as promastigotes and infected macrophages in vitro and mice, but Δatg4.2 survived poorly irrespective of infection with promastigotes or amastigotes, whereas this was the case only when promastigotes of Δatg4.1 were used. Promastigotes of Δatg4.2 but not Δatg4.1 were more susceptible than wild type promastigotes to starvation and oxidative stresses, which correlated with increased reactive oxygen species levels and oxidatively damaged proteins in the cells as well as impaired mitochondrial function. The antioxidant N-acetylcysteine reversed this phenotype, reducing both basal and induced autophagy and restoring mitochondrial function, indicating a relationship between reactive oxygen species levels and autophagy. Deletion of ATG4.2 had a more dramatic effect upon autophagy than did deletion of ATG4.1. This phenotype is consistent with a reduced efficiency in the autophagic process in Δatg4.2, possibly due to ATG4.2 having a key role in removal of ATG8 from mature autophagosomes and thus facilitating delivery to the lysosomal network. These findings show that there is a level of functional redundancy between the two ATG4s, and that ATG4.2 appears to be the more important. Moreover, the low infectivity of Δatg4.2 demonstrates that autophagy is important for the virulence of the parasite

    Endoscopic Treatment of Vesicoureteral Reflux with Dextranomer/Hyaluronic Acid in Children

    Get PDF
    Purpose. The goal of this review is to present current indications, injectable agents, techniques, success rates, complications, and potential future applications of endoscopic treatment for vesicoureteral reflux (VUR) in children. Materials and Methods. The endoscopic method currently achieving one of the highest success rates is the double hydrodistention-implantation technique (HIT). This method employs dextranomer/hyaluronic acid copolymer, which has been used in pediatric urology for over 10 years and may be at present the first choice injectable agent due to its safety and efficacy. Results. While most contemporary series report cure rates of greater than 85% for primary VUR, success rates of complicated cases of VUR may be, depending on the case, significantly lower. Endoscopic treatment offers major advantages to patients while avoiding potentially complicated open surgery. As the HIT method continues to be applied to complex cases of VUR and more outcome data become available, the indication for endoscopic treatment may exceed the scope of primary VUR. Conclusions. Endoscopic injection is emerging as the treatment of choice for VUR in children

    Electronic and magnetic properties of substitutional Mn clusters in (Ga,Mn)As

    Full text link
    The magnetization and hole distribution of Mn clusters in (Ga,Mn)As are investigated by all-electron total energy calculations using the projector augmented wave method within the density-functional formalism. It is found that the energetically most favorable clusters consist of Mn atoms surrounding one center As atom. As the Mn cluster grows the hole band at the Fermi level splits increasingly and the hole distribution gets increasingly localized at the center As atom. The hole distribution at large distances from the cluster does not depend significantly on the cluster size. As a consequence, the spin-flip energy differences of distant clusters are essentially independent of the cluster size. The Curie temperature TCT_C is estimated directly from these spin-flip energies in the mean field approximation. When clusters are present estimated TCT_C values are around 250 K independent of Mn concentration whereas for a uniform Mn distribution we estimate a TCT_C of about 600 K.Comment: 7 pages, 5 figures, 2 tables; Revised manuscript 26. May 200

    Application of LANDSAT to the surveillance of lake eutrophication in the Great Lakes basin

    Get PDF
    The author has identified the following significant results. A step-by-step procedure for establishing and monitoring the trophic status of inland lakes with the use of LANDSAT data, surface sampling, laboratory analysis, and aerial observations were demonstrated. The biomass was related to chlorophyll-a concentrations, water clarity, and trophic state. A procedure was developed for using surface sampling, LANDSAT data, and linear regression equations to produce a color-coded image of large lakes showing the distribution and concentrations of water quality parameters, causing eutrophication as well as parameters which indicate its effects. Cover categories readily derived from LANDSAT were those for which loading rates were available and were known to have major effects on the quality and quantity of runoff and lake eutrophication. Urban, barren land, cropland, grassland, forest, wetlands, and water were included

    Many-body effects in x-ray absorption and magnetic circular dichroism spectra within the LSDA+DMFT framework

    Full text link
    The theoretical description of photoemission spectra of transition metals was greatly improved recently by accounting for the correlations between the d electrons within the local spin density approximation (LSDA) plus dynamical mean field theory (DMFT). We assess the improvement of the LSDA+DMFT over the plain LSDA in x-ray absorption spectroscopy, which --- unlike the photoemission spectroscopy --- is probing unocccupied electronic states. By investigating the L2,3-edge x-ray absorption near-edge structure (XANES) and x-ray magnetic circular dichroism (XMCD) of Fe, Co, and Ni, we find that the LSDA+DMFT improves the LSDA results, in particular concerning the asymmetry of the L3 white line. Differences with respect to the experiment, nevertheless, remain --- particularly concerning the ratio of the intensities of the L3 and L2 peaks. The changes in the XMCD peak intensities invoked by the use of the LSDA+DMFT are a consequence of the improved description of the orbital polarization and are consistent with the XMCD sum rules. Accounting for the core hole within the final state approximation does not generally improve the results. This indicates that to get more accurate L2,3-edge XANES and XMCD spectra, one has to treat the core hole beyond the final state approximation.Comment: 4 figures, 1 table, 8 page

    Symmetric Versus Nonsymmetric Structure of the Phosphorus Vacancy on InP(110)

    Full text link
    The atomic and electronic structure of positively charged P vacancies on InP(110) surfaces is determined by combining scanning tunneling microscopy, photoelectron spectroscopy, and density-functional theory calculations. The vacancy exhibits a nonsymmetric rebonded atomic configuration with a charge transfer level 0.75+-0.1 eV above the valence band maximum. The scanning tunneling microscopy (STM) images show only a time average of two degenerate geometries, due to a thermal flip motion between the mirror configurations. This leads to an apparently symmetric STM image, although the ground state atomic structure is nonsymmetric.Comment: 5 pages including 3 figures. related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Diversity, elevational variation, and phylogeographic origin of stump-toed frogs (Microhylidae: Cophylinae: Stumpffia) on the Marojejy massif, northern Madagascar

    Get PDF
    Stump-toed frogs (genus Stumpffia Boettger, 1881) are a diverse group of small-bodied frogs endemic to Madagascar. Seven species of this genus occur on Marojejy, a steep massif in northeastern Madagascar. Here we examine the elevational distribution, phylogenetic position, biogeographic origin, and genetic differentiation of this Stumpffia assemblage. We show that none of these species is another’s closest relative, but rather they are all independent lineages that probably colonised the Marojejy Massif through repeated immigration events. All of the lineages on Marojejy are most closely related to species south and southwest of the massif, except one lineage, formerly known as Stumpffia sp. Ca07, but here assigned to S. sorata as a deep conspecific lineage (and referred to as S. cf. sorata), which occurs also in Sorata, 90 km north of Marojejy. The species on Marojejy are typically restricted to narrow elevational ranges, but at least two species, S. cf. sorata and S. tridactyla, occur over elevations spanning 1000 metres. We assessed the genetic variability of these populations, and found considerable haplotype separation in fragments of the mitochondrial 16S rRNA and nuclear Rag-1 genes, suggesting some disruption of gene flow associated with elevation. We discuss the biogeographic implications of our findings and, based on previously published data, the evolution of non-overlapping bioacoustic parameters among the diverse assemblage of Stumpffia species on the Marojejy massif
    corecore