3,229 research outputs found

    Dynamics of a deep-water seagrass population on the Great Barrier Reef: annual occurrence and response to a major dredging program

    Get PDF
    Global seagrass research efforts have focused on shallow coastal and estuarine seagrass populations where alarming declines have been recorded. Comparatively little is known about the dynamics of deep-water seagrasses despite evidence that they form extensive meadows in some parts of the world. Deep-water seagrasses are subject to similar anthropogenic threats as shallow meadows, particularly along the Great Barrier Reef lagoon where they occur close to major population centres. We examine the dynamics of a deep-water seagrass population in the GBR over an 8 year period during which time a major capital dredging project occurred. Seasonal and inter-annual changes in seagrasses were assessed as well as the impact of dredging. The seagrass population was found to occur annually, generally present between July and December each year. Extensive and persistent turbid plumes from a large dredging program over an 8 month period resulted in a failure of the seagrasses to establish in 2006, however recruitment occurred the following year and the regular annual cycle was re-established. Results show that despite considerable inter annual variability, deep-water seagrasses had a regular annual pattern of occurrence, low resistance to reduced water quality but a capacity for rapid recolonisation on the cessation of impacts

    First-Principles Studies of Hydrogenated Si(111)--7×\times7

    Full text link
    The relaxed geometries and electronic properties of the hydrogenated phases of the Si(111)-7×\times7 surface are studied using first-principles molecular dynamics. A monohydride phase, with one H per dangling bond adsorbed on the bare surface is found to be energetically favorable. Another phase where 43 hydrogens saturate the dangling bonds created by the removal of the adatoms from the clean surface is found to be nearly equivalent energetically. Experimental STM and differential reflectance characteristics of the hydrogenated surfaces agree well with the calculated features.Comment: REVTEX manuscript with 3 postscript figures, all included in uu file. Also available at http://www.phy.ohiou.edu/~ulloa/ulloa.htm

    Fast algorithm for calculating two-photon absorption spectra

    Full text link
    We report a numerical calculation of the two-photon absorption coefficient of electrons in a binding potential using the real-time real-space higher-order difference method. By introducing random vector averaging for the intermediate state, the task of evaluating the two-dimensional time integral is reduced to calculating two one-dimensional integrals. This allows the reduction of the computation load down to the same order as that for the linear response function. The relative advantage of the method compared to the straightforward multi-dimensional time integration is greater for the calculation of non-linear response functions of higher order at higher energy resolution.Comment: 4 pages, 2 figures. It will be published in Phys. Rev. E on 1, March, 199

    Suppression of extraneous thermal noise in cavity optomechanics

    Get PDF
    Extraneous thermal motion can limit displacement sensitivity and radiation pressure effects, such as optical cooling, in a cavity-optomechanical system. Here we present an active noise suppression scheme and its experimental implementation. The main challenge is to selectively sense and suppress extraneous thermal noise without affecting motion of the oscillator. Our solution is to monitor two modes of the optical cavity, each with different sensitivity to the oscillator's motion but similar sensitivity to the extraneous thermal motion. This information is used to imprint "anti-noise" onto the frequency of the incident laser field. In our system, based on a nano-mechanical membrane coupled to a Fabry-P\'{e}rot cavity, simulation and experiment demonstrate that extraneous thermal noise can be selectively suppressed and that the associated limit on optical cooling can be reduced.Comment: 27 pages, 14 figure

    Vertical current induced domain wall motion in MgO-based magnetic tunnel junction with low current densities

    Full text link
    Shifting electrically a magnetic domain wall (DW) by the spin transfer mechanism is one of the future ways foreseen for the switching of spintronic memories or registers. The classical geometries where the current is injected in the plane of the magnetic layers suffer from a poor efficiency of the intrinsic torques acting on the DWs. A way to circumvent this problem is to use vertical current injection. In that case, theoretical calculations attribute the microscopic origin of DW displacements to the out-of-plane (field-like) spin transfer torque. Here we report experiments in which we controllably displace a DW in the planar electrode of a magnetic tunnel junction by vertical current injection. Our measurements confirm the major role of the out-of-plane spin torque for DW motion, and allow to quantify this term precisely. The involved current densities are about 100 times smaller than the one commonly observed with in-plane currents. Step by step resistance switching of the magnetic tunnel junction opens a new way for the realization of spintronic memristive devices

    First principles study of the origin and nature of ferromagnetism in (Ga,Mn)As

    Full text link
    The properties of diluted Ga1−x_{1-x}Mnx_xAs are calculated for a wide range of Mn concentrations within the local spin density approximation of density functional theory. M\"ulliken population analyses and orbital-resolved densities of states show that the configuration of Mn in GaAs is compatible with either 3d5^5 or 3d6^6, however the occupation is not integer due to the large pp-dd hybridization between the Mn dd states and the valence band of GaAs. The spin splitting of the conduction band of GaAs has a mean field-like linear variation with the Mn concentration and indicates ferromagnetic coupling with the Mn ions. In contrast the valence band is antiferromagnetically coupled with the Mn impurities and the spin splitting is not linearly dependent on the Mn concentration. This suggests that the mean field approximation breaks down in the case of Mn-doped GaAs and corrections due to multiple scattering must be considered. We calculate these corrections within a simple free electron model and find good agreement with our {\it ab initio} results if a large exchange constant (Nβ=−4.5N\beta=-4.5eV) is assumed.Comment: 15 pages, 14 figure

    High-reflectivity, high-Q micromechanical membranes via guided resonances for enhanced optomechanical coupling

    Full text link
    Using Fano-type guided resonances (GRs) in photonic crystal (PhC) slab structures, we numerically and experimentally demonstrate optical reflectivity enhancement of high-Q SiNx membrane-type resonators used in membrane-in-the-middle optomechanical (OM) systems. Normal-incidence transmission and mechanical ringdown measurements of 50-nm-thick PhC membranes demonstrate GRs near 1064 nm, leading to a ~ 4\times increase in reflectivity while preserving high mechanical Q factors of up to ~ 5 \times 10^6. The results would allow improvement of membrane-in-the-middle OM systems by virtue of increased OM coupling, presenting a path towards ground state cooling of such a membrane and observations of related quantum effects

    Efficient Recursion Method for Inverting Overlap Matrix

    Full text link
    A new O(N) algorithm based on a recursion method, in which the computational effort is proportional to the number of atoms N, is presented for calculating the inverse of an overlap matrix which is needed in electronic structure calculations with the the non-orthogonal localized basis set. This efficient inverting method can be incorporated in several O(N) methods for diagonalization of a generalized secular equation. By studying convergence properties of the 1-norm of an error matrix for diamond and fcc Al, this method is compared to three other O(N) methods (the divide method, Taylor expansion method, and Hotelling's method) with regard to computational accuracy and efficiency within the density functional theory. The test calculations show that the new method is about one-hundred times faster than the divide method in computational time to achieve the same convergence for both diamond and fcc Al, while the Taylor expansion method and Hotelling's method suffer from numerical instabilities in most cases.Comment: 17 pages and 4 figure

    Hypercoagulability progresses to hypocoagulability during evolution of acetaminophen-induced acute liver injury in pigs

    Get PDF
    Increases in prothrombin time (PT) and international normalised ratio (INR) characterise acute liver injury (ALI) and failure (ALF), yet a wide heterogeneity in clotting abnormalities exists. This study defines evolution of coagulopathy in 10 pigs with acetaminophen (APAP)-induced ALI compared to 3 Controls. APAP administration began at 0 h and continued to ‘ALF’, defined as INR >3. In APAP pigs, INR was 1.05 ± 0.02 at 0 h, 2.15 ± 0.43 at 16 h and > 3 at 18 ± 1 h. At 12 h thromboelastography (TEG) demonstrated increased clot formation rate, associated with portal vein platelet aggregates and reductions in protein C, protein S, antithrombin and A Disintegrin and Metalloprotease with Thrombospondin type 1 repeats–13 (ADAMTS-13) to 60%, 24%, 47% and 32% normal respectively. At 18 ± 1 h, INR > 3 was associated with: hypocoagulable TEG profile with heparin-like effect; falls in thrombin generation, Factor V and Factor VIII to 52%, 19% and 17% normal respectively; further decline in anticoagulants; thrombocytopenia; neutrophilia and endotoxemia. Multivariate analysis, found that ADAMTS-13 was an independent predictor of a hypercoagulable TEG profile and platelet count, endotoxin, Protein C and fibrinogen were independent predictors of a hypocoagulable TEG profile. INR remained normal in Controls. Dynamic changes in coagulation occur with progression of ALI: a pro-thrombotic state progresses to hypocoagulability
    • …
    corecore