320 research outputs found

    Uniform asymptotics of the coefficients of unitary moment polynomials

    Full text link
    Keating and Snaith showed that the 2kth2k^{th} absolute moment of the characteristic polynomial of a random unitary matrix evaluated on the unit circle is given by a polynomial of degree k2k^2. In this article, uniform asymptotics for the coefficients of that polynomial are derived, and a maximal coefficient is located. Some of the asymptotics are given in explicit form. Numerical data to support these calculations are presented. Some apparent connections between random matrix theory and the Riemann zeta function are discussed.Comment: 31 pages, 1 figure, 2 tables. A few minor misprints fixe

    Optimization in task--completion networks

    Full text link
    We discuss the collective behavior of a network of individuals that receive, process and forward to each other tasks. Given costs they store those tasks in buffers, choosing optimally the frequency at which to check and process the buffer. The individual optimizing strategy of each node determines the aggregate behavior of the network. We find that, under general assumptions, the whole system exhibits coexistence of equilibria and hysteresis.Comment: 18 pages, 3 figures, submitted to JSTA

    Predicting the size and probability of epidemics in a population with heterogeneous infectiousness and susceptibility

    Full text link
    We analytically address disease outbreaks in large, random networks with heterogeneous infectivity and susceptibility. The transmissibility TuvT_{uv} (the probability that infection of uu causes infection of vv) depends on the infectivity of uu and the susceptibility of vv. Initially a single node is infected, following which a large-scale epidemic may or may not occur. We use a generating function approach to study how heterogeneity affects the probability that an epidemic occurs and, if one occurs, its attack rate (the fraction infected). For fixed average transmissibility, we find upper and lower bounds on these. An epidemic is most likely if infectivity is homogeneous and least likely if the variance of infectivity is maximized. Similarly, the attack rate is largest if susceptibility is homogeneous and smallest if the variance is maximized. We further show that heterogeneity in infectious period is important, contrary to assumptions of previous studies. We confirm our theoretical predictions by simulation. Our results have implications for control strategy design and identification of populations at higher risk from an epidemic.Comment: 5 pages, 3 figures. Submitted to Physical Review Letter

    Propagation on networks: an exact alternative perspective

    Get PDF
    By generating the specifics of a network structure only when needed (on-the-fly), we derive a simple stochastic process that exactly models the time evolution of susceptible-infectious dynamics on finite-size networks. The small number of dynamical variables of this birth-death Markov process greatly simplifies analytical calculations. We show how a dual analytical description, treating large scale epidemics with a Gaussian approximations and small outbreaks with a branching process, provides an accurate approximation of the distribution even for rather small networks. The approach also offers important computational advantages and generalizes to a vast class of systems.Comment: 8 pages, 4 figure

    Combinatorics and Boson normal ordering: A gentle introduction

    Full text link
    We discuss a general combinatorial framework for operator ordering problems by applying it to the normal ordering of the powers and exponential of the boson number operator. The solution of the problem is given in terms of Bell and Stirling numbers enumerating partitions of a set. This framework reveals several inherent relations between ordering problems and combinatorial objects, and displays the analytical background to Wick's theorem. The methodology can be straightforwardly generalized from the simple example given herein to a wide class of operators.Comment: 8 pages, 1 figur

    From Quantum Mechanics to Quantum Field Theory: The Hopf route

    Full text link
    We show that the combinatorial numbers known as {\em Bell numbers} are generic in quantum physics. This is because they arise in the procedure known as {\em Normal ordering} of bosons, a procedure which is involved in the evaluation of quantum functions such as the canonical partition function of quantum statistical physics, {\it inter alia}. In fact, we shall show that an evaluation of the non-interacting partition function for a single boson system is identical to integrating the {\em exponential generating function} of the Bell numbers, which is a device for encapsulating a combinatorial sequence in a single function. We then introduce a remarkable equality, the Dobinski relation, and use it to indicate why renormalisation is necessary in even the simplest of perturbation expansions for a partition function. Finally we introduce a global algebraic description of this simple model, giving a Hopf algebra, which provides a starting point for extensions to more complex physical systems

    Counting, generating and sampling tree alignments

    Get PDF
    Pairwise ordered tree alignment are combinatorial objects that appear in RNA secondary structure comparison. However, the usual representation of tree alignments as supertrees is ambiguous, i.e. two distinct supertrees may induce identical sets of matches between identical pairs of trees. This ambiguity is uninformative, and detrimental to any probabilistic analysis.In this work, we consider tree alignments up to equivalence. Our first result is a precise asymptotic enumeration of tree alignments, obtained from a context-free grammar by mean of basic analytic combinatorics. Our second result focuses on alignments between two given ordered trees SS and TT. By refining our grammar to align specific trees, we obtain a decomposition scheme for the space of alignments, and use it to design an efficient dynamic programming algorithm for sampling alignments under the Gibbs-Boltzmann probability distribution. This generalizes existing tree alignment algorithms, and opens the door for a probabilistic analysis of the space of suboptimal RNA secondary structures alignments.Comment: ALCOB - 3rd International Conference on Algorithms for Computational Biology - 2016, Jun 2016, Trujillo, Spain. 201

    Reactive Control Improvisation

    Full text link
    Reactive synthesis is a paradigm for automatically building correct-by-construction systems that interact with an unknown or adversarial environment. We study how to do reactive synthesis when part of the specification of the system is that its behavior should be random. Randomness can be useful, for example, in a network protocol fuzz tester whose output should be varied, or a planner for a surveillance robot whose route should be unpredictable. However, existing reactive synthesis techniques do not provide a way to ensure random behavior while maintaining functional correctness. Towards this end, we generalize the recently-proposed framework of control improvisation (CI) to add reactivity. The resulting framework of reactive control improvisation provides a natural way to integrate a randomness requirement with the usual functional specifications of reactive synthesis over a finite window. We theoretically characterize when such problems are realizable, and give a general method for solving them. For specifications given by reachability or safety games or by deterministic finite automata, our method yields a polynomial-time synthesis algorithm. For various other types of specifications including temporal logic formulas, we obtain a polynomial-space algorithm and prove matching PSPACE-hardness results. We show that all of these randomized variants of reactive synthesis are no harder in a complexity-theoretic sense than their non-randomized counterparts.Comment: 25 pages. Full version of a CAV 2018 pape
    • …
    corecore