We discuss a general combinatorial framework for operator ordering problems
by applying it to the normal ordering of the powers and exponential of the
boson number operator. The solution of the problem is given in terms of Bell
and Stirling numbers enumerating partitions of a set. This framework reveals
several inherent relations between ordering problems and combinatorial objects,
and displays the analytical background to Wick's theorem. The methodology can
be straightforwardly generalized from the simple example given herein to a wide
class of operators.Comment: 8 pages, 1 figur