439 research outputs found

    Ontogeny of synaptophysin and synaptoporin in the central nervous system

    Get PDF
    The expression of the synaptic vesicle antigens synaptophysin (SY) and synaptoporin (SO) was studied in the rat striatum, which contains a nearly homogeneous population of GABAergic neurons. In situ hybridization revealed high levels of SY transcripts in the striatal anlage from embryonic day (E) 14 until birth. In contrast. SO hybridization signals were low, and no immunoreactive cell bodies were detected at these stages of development. At E 14, SY-immunoreactivity was restricted to perikarya. In later prenatal stages of development SY-immunoreactivity appeared in puncta (identified as terminals containing immunostained synaptic vesicles), fibers, thick fiber bundles and ‘patches’. In postnatal and adult animals, perikarya of striatal neurons exhibited immunoreaction for SO; ultrastructurally SO antigen was found in the Golgi apparatus and in multivesicular bodies. SO-positive boutons were rare in the striatum. In the neuropil, numerous presynaptic terminals positive for SY were observed. Our data indicate that the expression of synaptic vesicle proteins in GABAergic neurons of the striatum is developmentally regulated. Whereas SY is prevalent during embryonic development, SO is the major synaptic vesicle antigen expressed postnatally by striatal neurons which project to the globus pallidus and the substantia nigra. In contrast synapses of striatal afferents (predominantly from cortex, thalamus and substantia nigra) contain SY

    Imaging of Nitric Oxide in Nitrergic Neuromuscular Neurotransmission in the Gut

    Get PDF
    Background: Numerous functional studies have shown that nitrergic neurotransmission plays a central role in peristalsis and sphincter relaxation throughout the gut and impaired nitrergic neurotransmission has been implicated in clinical disorders of all parts of the gut. However, the role of nitric oxide (NO) as a neurotransmitter continues to be controversial because: 1) the cellular site of production during neurotransmission is not well established; 2) NO may interacts with other inhibitory neurotransmitter candidates, making it difficult to understand its precise role. Methodology/Principal Findings: Imaging NO can help resolve many of the controversies regarding the role of NO in nitrergic neurotransmission. Imaging of NO and its cellular site of production is now possible. NO forms quantifiable fluorescent compound with diaminofluorescein (DAF) and allows imaging of NO with good specificity and sensitivity in living cells. In this report we describe visualization and regulation of NO and calcium (Ca2+Ca^{2+}) in the myenteric nerve varicosities during neurotransmission using multiphoton microscopy. Our results in mice gastric muscle strips provide visual proof that NO is produced de novo in the nitrergic nerve varicosities upon nonadrenergic noncholinergic (NANC) nerve stimulation. These studies show that NO is a neurotransmitter rather than a mediator. Changes in NO production in response to various pharmacological treatments correlated well with changes in slow inhibitory junction potential of smooth muscles. Conclusions/Significance: Dual imaging and electrophysiologic studies provide visual proof that during nitrergic neurotransmission NO is produced in the nerve terminals. Such studies may help define whether NO production or its signaling pathway is responsible for impaired nitrergic neurotransmission in pathological states

    Basolateral Sorting of Syntaxin 4 Is Dependent on Its N-terminal Domain and the AP1B Clathrin Adaptor, and Required for the Epithelial Cell Polarity

    Get PDF
    Generation of epithelial cell polarity requires mechanisms to sort plasma membrane proteins to the apical and basolateral domains. Sorting involves incorporation into specific vesicular carriers and subsequent fusion to the correct target membranes mediated by specific SNARE proteins. In polarized epithelial cells, the SNARE protein syntaxin 4 localizes exclusively to the basolateral plasma membrane and plays an important role in basolateral trafficking pathways. However, the mechanism of basolateral targeting of syntaxin 4 itself has remained poorly understood. Here we show that newly synthesized syntaxin 4 is directly targeted to the basolateral plasma membrane in polarized Madin-Darby canine kidney (MDCK) cells. Basolateral targeting depends on a signal that is centered around residues 24–29 in the N-terminal domain of syntaxin 4. Furthermore, basolateral targeting of syntaxin 4 is dependent on the epithelial cell-specific clathrin adaptor AP1B. Disruption of the basolateral targeting signal of syntaxin 4 leads to non-polarized delivery to both the apical and basolateral surface, as well as partial intercellular retention in the trans-Golgi network. Importantly, disruption of the basolateral targeting signal of syntaxin 4 leads to the inability of MDCK cells to establish a polarized morphology which suggests that restriction of syntaxin 4 to the basolateral domain is required for epithelial cell polarity

    Alix is required for activity-dependent bulk endocytosis at brain synapses

    Get PDF
    In chemical synapses undergoing high frequency stimulation, vesicle components can be retrieved from the plasma membrane via a clathrin-independent process called activitydependent bulk endocytosis (ADBE). Alix (ALG-2-interacting protein X/PDCD6IP) is an adaptor protein binding to ESCRT and endophilin-A proteins which is required for clathrinindependent endocytosis in fibroblasts. Alix is expressed in neurons and concentrates at synapses during epileptic seizures. Here, we used cultured neurons to show that Alix is recruited to presynapses where it interacts with and concentrates endophilin-A during conditions triggering ADBE. Using Alix knockout (ko) neurons, we showed that this recruitment, which requires interaction with the calcium-binding protein ALG-2, is necessary for ADBE. We also found that presynaptic compartments of Alix ko hippocampi display subtle morphological defects compatible with flawed synaptic activity and plasticity detected electrophysiologically. Furthermore, mice lacking Alix in the forebrain undergo less seizures during kainate-induced status epilepticus and reduced propagation of the epileptiform activity. These results thus show that impairment of ADBE due to the lack of neuronal Alix leads to abnormal synaptic recovery during physiological or pathological repeated stimulations

    Synchronous Symmetry Breaking in Neurons with Different Neurite Counts

    Get PDF
    As neurons develop, several immature processes (i.e., neurites) grow out of the cell body. Over time, each neuron breaks symmetry when only one of its neurites grows much longer than the rest, becoming an axon. This symmetry breaking is an important step in neurodevelopment, and aberrant symmetry breaking is associated with several neuropsychiatric diseases, including schizophrenia and autism. However, the effects of neurite count in neuronal symmetry breaking have never been studied. Existing models for neuronal polarization disagree: some predict that neurons with more neurites polarize up to several days later than neurons with fewer neurites, while others predict that neurons with different neurite counts polarize synchronously. We experimentally find that neurons with different neurite counts polarize synchronously. We also show that despite the significant differences among the previously proposed models, they all agree with our experimental findings when the expression levels of the proteins responsible for symmetry breaking increase with neurite count. Consistent with these results, we observe that the expression levels of two of these proteins, HRas and shootin1, significantly correlate with neurite count. This coordinated symmetry breaking we observed among neurons with different neurite counts may be important for synchronized polarization of neurons in developing organisms

    Electrodiffusion: A continuum modeling framework for biomolecular systems with realistic spatiotemporal resolution

    Full text link
    A computational framework is presented for the continuum modeling of cellular biomolecular diffusion influenced by electrostatic driving forces. This framework is developed from a combination of state-of-the-art numerical methods, geometric meshing, and computer visualization tools. In particular, a hybrid of (adaptive) finite element and boundary element methods is adopted to solve the Smoluchowski equation (SE), the Poisson equation (PE), and the Poisson-Nernst-Planck equation (PNPE) in order to describe electrodiffusion processes. The finite element method is used because of its flexibility in modeling irregular geometries and complex boundary conditions. The boundary element method is used due to the convenience of treating the singularities in the source charge distribution and its accurate solution to electrostatic problems on molecular boundaries. Nonsteady-state diffusion can be studied using this framework, with the electric field computed using the densities of charged small molecules and mobile ions in the solvent. A solution for mesh generation for biomolecular systems is supplied, which is an essential component for the finite element and boundary element computations. The uncoupled Smoluchowski equation and Poisson-Boltzmann equation are considered as special cases of the PNPE in the numerical algorithm, and therefore can be solved in this framework as well. Two types of computations are reported in the results: stationary PNPE and time-dependent SE or Nernst-Planck equations solutions. A biological application of the first type is the ionic density distribution around a fragment of DNA determined by the equilibrium PNPE. The stationary PNPE with nonzero flux is also studied for a simple model system, and leads to an observation that the interference on electrostatic field of the substrate charges strongly affects the reaction rate coefficient. The second is a time-dependent diffusion process: the consumption of the neurotransmitter acetylcholine by acetylcholinesterase, determined by the SE and a single uncoupled solution of the Poisson-Boltzmann equation. The electrostatic effects, counterion compensation, spatiotemporal distribution, and diffusion-controlled reaction kinetics are analyzed and different methods are compared

    Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity

    Get PDF
    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical role in activity-dependent plasticity and hippocampal-dependent learning. Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that weaken synaptic transmission. Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy

    Bi-allelic variants in TSPOAP1, encoding the active zone protein RIMBP1, cause autosomal recessive dystonia

    Get PDF
    Dystonia is a debilitating hyperkinetic movement disorder, which can be transmitted as a monogenic trait. Here, we describe homozygous frameshift, nonsense and missense variants in TSPOAP1, encoding the active zone RIM-binding protein 1 (RIMBP1), as a novel genetic cause of autosomal recessive dystonia in seven subjects from three unrelated families. Subjects carrying loss-of-function variants presented with juvenile-onset progressive generalized dystonia, associated with intellectual disability and cerebellar atrophy. Conversely, subjects carrying a pathogenic missense variant (p.Gly1808Ser) presented with isolated adult-onset focal dystonia. In mice, complete loss of RIMBP1, known to reduce neurotransmission, led to motor abnormalities reminiscent of dystonia, decreased Purkinje cell dendritic arborization, and reduced numbers of cerebellar synapses. In vitro analysis of the p.Gly1808Ser variant showed larger spike-evoked calcium transients and enhanced neurotransmission, suggesting that RIMBP1-linked dystonia can be caused by either reduced or enhanced rates of spike-evoked release in relevant neural networks. Our findings establish a direct link between dysfunction of the presynaptic active zone and dystonia and highlight the critical role played by well-balanced neurotransmission in motor control and disease pathogenesis

    Sex-Dependent Novelty Response in Neurexin-1α Mutant Mice

    Get PDF
    Neurexin-1 alpha (NRXN1α) belongs to the family of cell adhesion molecules (CAMs), which are involved in the formation of neuronal networks and synapses. NRXN1α gene mutations have been identified in neuropsychiatric diseases including Schizophrenia (SCZ) and Autism Spectrum Disorder (ASD). In order to get a better understanding of the pleiotropic behavioral manifestations caused by NRXN1α gene mutations, we performed a behavioral study of Nrxn1α heterozygous knock-out (+/−) mice and observed increased responsiveness to novelty and accelerated habituation to novel environments compared to wild type (+/+) litter-mates. However, this effect was mainly observed in male mice, strongly suggesting that gender-specific mechanisms play an important role in Nrxn1α-induced phenotypes
    • …
    corecore