793 research outputs found

    Efficient Dynamic Importance Sampling of Rare Events in One Dimension

    Get PDF
    Exploiting stochastic path integral theory, we obtain \emph{by simulation} substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of ``Dynamic Importance Sampling'' (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a 5kBT5 k_B T barrier height and 300 for 9kBT9 k_B T, compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instanton-like crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the ``Jacobian'' term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.Comment: version to be published in Phys. Rev.

    Indications for 3 Mpc-scale large-scale structure associated with an X-ray luminous cluster of galaxies at z=0.95

    Full text link
    X-ray luminous clusters of galaxies at z~1 are emerging as major cosmological probes and are fundamental tools to study the cosmic large-scale structure and environmental effects of galaxy evolution at large look-back times. We present details of the newly-discovered galaxy cluster XMMU J0104.4-0630 at z=0.947 and a probable associated system in the LSS environment. The clusters were found in a systematic study for high-redshift systems using deep archival XMM-Newton data for the serendipitous detection and the X-ray analysis, complemented by optical/NIR imaging observations and spectroscopy of the main cluster. We find a well-evolved, intermediate luminosity cluster with Lx=(6.4+-1.3)x10^43 erg/s (0.5-2.0 keV) and strong central 1.4 GHz radio emission. The cluster galaxy population exhibits a pronounced transition toward bluer colors at cluster-centric distances of 1-2 core radii, consistent with an age difference of 1-2 Gyr for a single burst solar metallicity model. The second, less evolved X-ray cluster at a projected distance of 6.4 arcmin (~3 Mpc) and a concordant red-sequence color likely forms a cluster-cluster bridge with the main target as part of its surrounding large-scale structure at z~0.95.Comment: 5 pages, 4 figures, accepted for publication in A&

    Au+Au Reactions at the AGS: Experiments E866 and E917

    Full text link
    Particle production and correlation functions from Au+Au reactions have been measured as a function of both beam energy (2-10.7AGeV) and impact parameter. These results are used to probe the dynamics of heavy-ion reactions, confront hadronic models over a wide range of conditions and to search for the onset of new phenomena.Comment: 12 pages, 14 figures, Talk presented at Quark Matter '9

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Evidence That Descending Cortical Axons Are Essential for Thalamocortical Axons to Cross the Pallial-Subpallial Boundary in the Embryonic Forebrain

    Get PDF
    Developing thalamocortical axons traverse the subpallium to reach the cortex located in the pallium. We tested the hypothesis that descending corticofugal axons are important for guiding thalamocortical axons across the pallial-subpallial boundary, using conditional mutagenesis to assess the effects of blocking corticofugal axonal development without disrupting thalamus, subpallium or the pallial-subpallial boundary. We found that thalamic axons still traversed the subpallium in topographic order but did not cross the pallial-subpallial boundary. Co-culture experiments indicated that the inability of thalamic axons to cross the boundary was not explained by mutant cortex developing a long-range chemorepulsive action on thalamic axons. On the contrary, cortex from conditional mutants retained its thalamic axonal growth-promoting activity and continued to express Nrg-1, which is responsible for this stimulatory effect. When mutant cortex was replaced with control cortex, corticofugal efferents were restored and thalamic axons from conditional mutants associated with them and crossed the pallial-subpallial boundary. Our study provides the most compelling evidence to date that cortical efferents are required to guide thalamocortical axons across the pallial-subpallial boundary, which is otherwise hostile to thalamic axons. These results support the hypothesis that thalamic axons grow from subpallium to cortex guided by cortical efferents, with stimulation from diffusible cortical growth-promoting factors

    Overexpression of Pax6 results in microphthalmia, retinal dysplasia and defective retinal ganglion cell axon guidance

    Get PDF
    Background: The transcription factor Pax6 is expressed by many cell types in the developing eye. Eyes do not form in homozygous loss-of-function mouse mutants (Pax6(Sey/Sey)) and are abnormally small in Pax6(Sey/+) mutants. Eyes are also abnormally small in PAX77 mice expressing multiple copies of human PAX6 in addition to endogenous Pax6; protein sequences are identical in the two species. The developmental events that lead to microphthalmia in PAX77 mice are not well-characterised, so it is not clear whether over- and under-expression of Pax6/PAX6 cause microphthalmia through similar mechanisms. Here, we examined the consequences of over-expression for the eye and its axonal connections. Results: Eyes form in PAX77(+/+) embryos but subsequently degenerate. At E12.5, we found no abnormalities in ocular morphology, retinal cell cycle parameters and the incidence of retinal cell death. From E14.5 on, we observed malformations of the optic disc. From E16.5 into postnatal life there is progressively more severe retinal dysplasia and microphthalmia. Analyses of patterns of gene expression indicated that PAX77(+/+) retinae produce a normal range of cell types, including retinal ganglion cells (RGCs). At E14.5 and E16.5, quantitative RT-PCR with probes for a range of molecules associated with retinal development showed only one significant change: a slight reduction in levels of mRNA encoding the secreted morphogen Shh at E16.5. At E16.5, tract-tracing with carbocyanine dyes in PAX77(+/+) embryos revealed errors in intraretinal navigation by RGC axons, a decrease in the number of RGC axons reaching the thalamus and an increase in the proportion of ipsilateral projections among those RGC axons that do reach the thalamus. A survey of embryos with different Pax6/PAX6 gene dosage (Pax6(Sey/+), Pax6(+/+), PAX77(+) and PAX77(+/+)) showed that (1) the total number of RGC axons projected by the retina and (2) the proportions that are sorted into the ipsilateral and contralateral optic tracts at the optic chiasm vary differently with gene dosage. Increasing dosage increases the proportion projecting ipsilaterally regardless of the size of the total projection. Conclusion: Pax6 overexpression does not obviously impair the initial formation of the eye and its major cell-types but prevents normal development of the retina from about E14.5, leading eventually to severe retinal degeneration in postnatal life. This sequence is different to that underlying microphthalmia in Pax6(+/-) heterozygotes, which is due primarily to defects in the initial stages of lens formation. Before the onset of severe retinal dysplasia, Pax6 overexpression causes defects of retinal axons, preventing their normal growth and navigation through the optic chiasm

    Association of community engagement with vaccination confidence and uptake: A cross-sectional survey in Sierra Leone, 2019

    Get PDF
    Background The 2014-2016 Ebola epidemic disrupted childhood immunization in Sierra Leone, Liberia, and Guinea. After the epidemic, the Government of Sierra Leone prioritized community engagement to increase vaccination confidence and uptake. To support these efforts, we examined potential drivers of vaccination confidence and uptake in Sierra Leone. Methods We conducted a population-based household survey with primary caregivers of children in a birth cohort of 12 to 23 months in four districts with low vaccination coverage in Sierra Leone in 2019. Modified Poisson regression modeling with robust variance estimation was used to examine if perceived community engagement in planning the immunization program in the community was associated with vaccination confidence and having a fully vaccinated child. Results The sample comprised 621 age-eligible children and their caregivers (91% response rate). Half of the caregivers (52%) reported that it usually takes too long to get to the vaccination site, and 36% perceived that health workers expect money for vaccination services that are supposed to be given at no charge. When mothers were the decision-makers of the children’s vaccination, 80% of the children were fully vaccinated versus 69% when fathers were the decision-makers and 56% when other relatives were the decision-makers. Caregivers with high confidence in vaccination were more likely to have fully vaccinated children compared to caregivers with low confidence (78% versus 53%). For example, caregivers who thought vaccines are ‘very much’ safe were more likely to have fully vaccinated children than those who thought vaccines are ‘somewhat’ safe (76% versus 48%). Overall, 53% of caregivers perceived high level of community engagement, 41% perceived medium level of engagement, and 6% perceived low level of engagement. Perceiving high community engagement was associated with expressing high vaccination confidence (adjusted prevalence ratio (aPR) = 2.60; 95% confidence interval (CI) = 1.67-4.04) and having a fully vaccinated child (aPR = 1.67; 95% CI = 1.18-2.38). Conclusions In these four low coverage districts in Sierra Leone, the perceived level of community engagement was strongly associated with vaccination confidence among caregivers and vaccination uptake among children. We have provided exploratory cross-sectional evidence to inform future longitudinal assessments to further investigate the potential causal effect of community engagement on vaccination confidence and uptake
    corecore