3,530 research outputs found

    First Report of Transmission of Soybean Mosaic Virus and Alfalfa Mosaic Virus by Aphis glycines in the New World

    Get PDF
    Originating text in English.Citation: Hill, J. H., Alleman, R., Hogg, D. B., Grau, C. R. (2001). First Report of Transmission of Soybean Mosaic Virus and Alfalfa Mosaic Virus by Aphis glycines in the New World. Plant Disease, 85(5), 561-561

    Recent study brings good news about the soybean aphid

    Get PDF
    Increased activity of bean leaf beetles and soybean aphids in Iowa soybean fields has challenged many of us over the last five years. Not just because of the sap feeding and leaf defoliation that can cause significant yield loss but also because we are dealing with another yield robber that we often can\u27t see. Iowa soybean fields can be infected with bean pod mottle and soybean {m}osaic viruses that are transmitted by bean leaf beetles and soybean aphids, respectively. The challenge that we are dealing with is, first of all, we can\u27t always see that we have a virus in soybean, and yield loss caused by viruses can occur even when symptoms are not apparent

    AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    Get PDF
    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity

    Electronic structure of Pd multi-layers on Re(0001): the role of charge transfer

    Get PDF
    Understanding the origin of the properties of metal-supported metal thin films is important for the rational design of bimetallic catalysts and other applications, but it is generally difficult to separate effects related to strain from those arising from interface interactions. Here we use density functional (DFT) theory to examine the structure and electronic behavior of few-layer palladium films on the rhenium (0001) surface, where there is negligible interfacial strain and therefore other effects can be isolated. Our DFT calculations predict stacking sequences and interlayer separations in excellent agreement with quantitative low-energy electron diffraction experiments. By theoretically simulating the Pd core-level X-ray photoemission spectra (XPS) of the films, we are able to interpret and assign the basic features of both low-resolution and high-resolution XPS measurements. The core levels at the interface shift to more negative energies, rigidly following the shifts in the same direction of the valence d-band center. We demonstrate that the valence band shift at the interface is caused by charge transfer from Re to Pd, which occurs mainly to valence states of hybridized s-p character rather than to the Pd d-band. Since the d-band filling is roughly constant, there is a correlation between the d-band center shift and its bandwidth. The resulting effect of this charge transfer on the valence d-band is thus analogous to the application of a lateral compressive strain on the adlayers. Our analysis suggests that charge transfer should be considered when describing the origin of core and valence band shifts in other metal / metal adlayer systems

    Thermodynamics of hydrogen vacancies in MgH2 from first-principles calculations and grand-canonical statistical mechanics

    Get PDF
    Ab initio calculations and statistical mechanics are combined to elucidate the thermodynamics of H vacancies in MgH2. A general method based on a grand-canonical ensemble of defect configurations is introduced to model the exchange of hydrogen between crystalline MgH2 and gas-phase H2. We find that, at temperatures and hydrogen partial pressures of practical interest, MgH2 is capable of accommodating only very small concentrations of hydrogen vacancies, which consist mainly of isolated defects rather than vacancy clusters, contrary to what is expected from a simple energetic analysis.Comment: 13 pages, 5 figures. Paper accepted in Physical Review

    Revealing the electroweak properties of a new scalar resonance

    Get PDF
    One or more new heavy resonances may be discovered in experiments at the CERN Large Hadron Collider. In order to determine if such a resonance is the long-awaited Higgs boson, it is essential to pin down its spin, CP, and electroweak quantum numbers. Here we describe how to determine what role a newly-discovered neutral CP-even scalar plays in electroweak symmetry breaking, by measuring its relative decay rates into pairs of electroweak vector bosons: WW, ZZ, \gamma\gamma, and Z\gamma. With the data-driven assumption that electroweak symmetry breaking respects a remnant custodial symmetry, we perform a general analysis with operators up to dimension five. Remarkably, only three pure cases and one nontrivial mixed case need to be disambiguated, which can always be done if all four decay modes to electroweak vector bosons can be observed or constrained. We exhibit interesting special cases of Higgs look-alikes with nonstandard decay patterns, including a very suppressed branching to WW or very enhanced branchings to \gamma\gamma and Z\gamma. Even if two vector boson branching fractions conform to Standard Model expectations for a Higgs doublet, measurements of the other two decay modes could unmask a Higgs imposter.Comment: 23 pages, two figures; v2: minor revision and version to appear in JHE

    Disruption of Parasite hmgb2 Gene Attenuates Plasmodium berghei ANKA Pathogenicity

    Get PDF
    Eukaryotic high-mobility-group-box (HMGB) proteins are nuclear factors involved in chromatin remodeling and transcription regulation. When released into the extracellular milieu, HMGB1 acts as a proinflammatory cytokine that plays a central role in the pathogenesis of several immune-mediated inflammatory diseases. We found that the Plasmodium genome encodes two genuine HMGB factors, Plasmodium HMGB1 and HMGB2, that encompass, like their human counterparts, a proinflammatory domain. Given that these proteins are released from parasitized red blood cells, we then hypothesized that Plasmodium HMGB might contribute to the pathogenesis of experimental cerebral malaria (ECM), a lethal neuroinflammatory syndrome that develops in C57BL/6 (susceptible) mice infected with Plasmodium berghei ANKA and that in many aspects resembles human cerebral malaria elicited by P. falciparum infection. The pathogenesis of experimental cerebral malaria was suppressed in C57BL/6 mice infected with P. berghei ANKA lacking the hmgb2 gene (Δhmgb2 ANKA), an effect associated with a reduction of histological brain lesions and with lower expression levels of several proinflammatory genes. The incidence of ECM in pbhmgb2-deficient mice was restored by the administration of recombinant PbHMGB2. Protection from experimental cerebral malaria in Δhmgb2 ANKA-infected mice was associated with reduced sequestration in the brain of CD4(+) and CD8(+) T cells, including CD8(+) granzyme B(+) and CD8(+) IFN-γ(+) cells, and, to some extent, neutrophils. This was consistent with a reduced parasite sequestration in the brain, lungs, and spleen, though to a lesser extent than in wild-type P. berghei ANKA-infected mice. In summary, Plasmodium HMGB2 acts as an alarmin that contributes to the pathogenesis of cerebral malaria.Pitié-Salpêtrière, Institut Pasteur (Paris)

    Vacancy ordering and electronic structure of gamma-Fe2O3 (maghemite): a theoretical investigation

    Full text link
    The crystal structure of the iron oxide gamma-Fe2O3 is usually reported in either the cubic system (space group P4332) with partial Fe vacancy disorder or in the tetragonal system (space group P41212) with full site ordering and c/a\approx 3. Using a supercell of the cubic structure, we obtain the spectrum of energies of all the ordered configurations which contribute to the partially disordered P4332 cubic structure. Our results show that the configuration with space group P41212 is indeed much more stable than the others, and that this stability arises from a favourable electrostatic contribution, as this configuration exhibits the maximum possible homogeneity in the distribution of iron cations and vacancies. Maghemite is therefore expected to be fully ordered in equilibrium, and deviations from this behaviour should be associated with metastable growth, extended anti-site defects and surface effects in the case of small nanoparticles. The confirmation of the ordered tetragonal structure allows us to investigate the electronic structure of the material using density functional theory (DFT) calculations. The inclusion of a Hubbard (DFT+U) correction allows the calculation of a band gap in good agreement with experiment. The value of the gap is dependent on the electron spin, which is the basis for the spin-filtering properties of maghemite.Comment: 19 pages, 2 tables, 5 figures. To appear in the Journal of Physics - Condensed Matter (2010)

    Magnetic Characterization of a Superconducting Transverse Gradient Undulator for Compact Laser Wakefield Accelerator-Driven FELs

    Get PDF
    A transverse gradient undulator (TGU) is a key component compensating for the relatively large energy spread of Laser Wakefield Accelerator (LWFA)-generated electron beams for realizing a compact Free Electron Laser (FEL). A superconducting TGU with 40 periods has been fabricated at the Karlsruhe Institute of Technology (KIT). In this contribution, we report that the superconducting TGU has been commissioned with nominal operational parameters at an off-line test bench. An experimental set-up for mapping the magnetic field on a two-dimensional grid in the TGU gap has been employed for the magnetic characterization. We show the first preliminary results of these measurements showing the longitudinal quality, the transverse gradient and the transient behaviour of the superconducting TGU field
    corecore