272 research outputs found

    Precision measurement of vector and tensor analyzing powers in elastic deuteron-proton scattering

    Get PDF
    High precision vector and tensor analyzing powers of elastic deuteron-proton d+p scattering have been measured at intermediate energies to investigate effects of three-nucleon forces (3NF). Angular distribution in the range of 70-120 degree in the center-of mass frame for incident-deuteron energies of 130 and 180 MeV were obtained using the RIKEN facility. The beam polarization was unambiguously determined by measuring the 12C(d,alpha)10B(2+) reaction at 0 degree. Results of the measurements are compared with state-of-the-art three-nucleon calculations. The present modeling of nucleon-nucleon forces and its extension to the three-nucleon system is not sufficient to describe the high precision data consistently and requires, therefore, further investigation

    Measurements of scattering observables for the pdpd break-up reaction

    Get PDF
    High-precision measurements of the scattering observables such as cross sections and analyzing powers for the proton-deuteron elastic and break-up reactions have been performed at KVI in the last two decades and elsewhere to investigate various aspects of the three-nucleon force (3NF) effects simultaneously. In 2006 an experiment was performed to study these effects in p+d\vec{p}+d break-up reaction at 135 MeV with the detection system, Big Instrument for Nuclear polarization Analysis, BINA. BINA covers almost the entire kinematical phase space of the break-up reaction. The results are interpreted with the help of state-of-the-art Faddeev calculations and are partly presented in this contribution.Comment: Proceedings of 19th International IUPAP Conference on Few-Body Problems in Physics, Bonn University, 31.08 - 05.09.2009, Bonn, GERMAN

    Systematic investigation of the elastic proton-deuteron differential cross section at intermediate energies

    Get PDF
    To investigate the importance of three-nucleon forces (3NF) systematically over a broad range of intermediate energies, the differential cross sections of elastic proton-deuteron scattering have been measured at proton bombarding energies of 108, 120, 135, 150, 170 and 190 MeV at center-of-mass angles between 3030^\circ and 170170^\circ. Comparisons with Faddeev calculations show unambiguously the shortcomings of calculations employing only two-body forces and the necessity of including 3NF. They also show the limitations of the latest few-nucleon calculations at backward angles, especially at higher beam energies. Some of these discrepancies could be partially due to relativistic effects. Data at lowest energy are also compared with a recent calculation based on \chipt

    Proton-deuteron radiative capture cross sections at intermediate energies

    Get PDF
    Differential cross sections of the reaction p(d,3He)γp(d,^3{\rm He})\gamma have been measured at deuteron laboratory energies of 110, 133 and 180 MeV. The data were obtained with a coincidence setup measuring both the outgoing 3^3He and the photon. The data are compared with modern calculations including all possible meson-exchange currents and two- and three- nucleon forces in the potential. The data clearly show a preference for one of the models, although the shape of the angular distribution cannot be reproduced by any of the presented models.Comment: 6 pages, 6 figures, accepted for publication in EPJ

    Spin observables in deuteron-proton radiative capture at intermediate energies

    Get PDF
    A radiative deuteron-proton capture experiment was carried out at KVI using polarized-deuteron beams at incident energies of 55, 66.5, and 90 MeV/nucleon. Vector and tensor-analyzing powers were obtained for a large angular range. The results are interpreted with the help of Faddeev calculations, which are based on modern two- and three-nucleon potentials. Our data are described well by the calculations, and disagree significantly with the observed tensor anomaly at RCNP.Comment: 10 pages, 4 figures, submitted to PL

    Comprehensive measurements of cross sections and spin observables of the three-body break-up channel in deuteron-deuteron scattering at 65 MeV/nucleon

    Get PDF
    Detailed measurements of five-fold differential cross sections and a rich set of vector and tensor analyzing powers of the 2H(d; dp)n break-up process using polarized deuteron-beam energy of 65 MeV/nucleon with a liquid-deuterium target are presented. The experiment was conducted at the AGOR facility at KVI using the BINA 4Pi-detection system. We discuss the analysis procedure including a thorough study of the systematic uncertainties. The results can be used to examine upcoming state-of-the-art calculations in the four-nucleon scattering domain, and will, thereby, provide further insights into the dynamics of three- and four-nucleon forces in few-nucleon systems. The results of coplanar configurations are compared with the results of recent theoretical calculations based on the Single-Scattering Approximation (SSA). Through these comparisons, the validity of SSA approximation is investigated in the Quasi-Free (QF) region.Comment: 33 pages, 30 figure

    Analyzing powers at low nucleon–nucleon relative energies in proton–deuteron breakup reaction

    Get PDF
    Vector analyzing powers for the d(p,pp)nd(\overset{\mapsto }{p},pp)n reaction have been measured at KVI for different kinematical configurations using a polarized proton beam with an energy of 190 MeV. We compared our data with different theoretical calculations at extremely low relative energies of the proton–proton and proton–neutron systems in the final state. For the proton–neutron case, we used the information of the two detected protons in the final state in which one of them scattered to an angle smaller than 40^{\circ} and the other one to an angle larger than 100^{\circ} in the laboratory frame. We extrapolated our measurements towards a kinematical configuration to a vanishing relative energy. Our results show that none of the theoretical models presented here is able to reproduce experimental data for the proton–proton case at very low relative energies. For the proton–neutron case, we were not able to provide a reliable extrapolation to small relative energies of less than 1 MeV. Present results are the basis for future investigations of spin-isospin dependencies in the nuclear many-body force

    Signatures of three-nucleon interactions in few-nucleon systems

    Get PDF
    Recent experimental results in three-body systems have unambiguously shown that calculations based only on nucleon-nucleon forces fail to accurately describe many experimental observables and one needs to include effects which are beyond the realm of the two-body potentials. This conclusion owes its significance to the fact that experiments and calculations can both be performed with a high accuracy. In this review, both theoretical and experimental achievements of the past decade will be underlined. Selected results will be presented. The discussion on the effects of the three-nucleon forces is, however, limited to the hadronic sector. It will be shown that despite the major successes in describing these seemingly simple systems, there are still clear discrepancies between data and the state-of-the-art calculations.Comment: accepted for publication in Rep. Prog. Phy

    Elastic proton-deuteron scattering at intermediate energies

    Full text link
    Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental data base for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This paper reviews the background of this problem and presents new data taken at KVI. Differential cross sections and analyzing powers for the 2H(p,d)p^{2}{\rm H}(\vec p,d){p} and H(d,d)p{\rm H}(\vec d,d){p} reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.Comment: 5 pages, 4 figures, submitted to PR
    corecore