633 research outputs found

    Long, Bellows-Free Vertical Helium Transfer Lines for the LHC Cryogenic System

    Get PDF
    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include four new vertical helium transfer lines connecting the new helium refrigerators to the underground areas. These four transfer lines will be installed between a refrigerator on the surface and an interconnection box located 80 m to 145 m underground. They consist of a vacuum jacket, a thermal screen and four internal helium pipes. Due to space and accessibility limitations, the lines have been specified without bellows or bends of any kind in the long vertical part; the thermal contractions must be compensated at the surface only. The displacement due to these contractions amounts to more than 35 cm in one case, and all four internal pipes, as well as the thermal screen, must be able to contract and expand independently. The lines will be built and installed by a consortium of Linde AG and Babcock Noell Nuclear GmbH. Their technical design choices are presented together with expected performance

    Intrinsic and extrinsic diffusion of indium in germanium

    Get PDF
    Diffusion experiments with indium (In) in germanium (Ge) were performed in the temperature range between 550 and 900°C. Intrinsic and extrinsic doping levels were achieved by utilizing various implantation doses. Indium concentration profiles were recorded by means of secondary ion mass spectrometry and spreading resistance profiling. The observed concentration independent diffusion profiles are accurately described based on the vacancy mechanism with a singly negatively charged mobile In-vacancy complex. In accord with the experiment, the diffusion model predicts an effective In diffusion coefficient under extrinsic conditions that is a factor of 2 higher than under intrinsic conditions. The temperature dependence of intrinsic In diffusion yields an activation enthalpy of 3.51 eV and confirms earlier results of Dorner et al. [Z. Metallk. 73, 325 (1982)]. The value clearly exceeds the activation enthalpy of Ge self- diffusion and indicates that the attractive interaction between In and a vacancy does not extend to third nearest neighbor sites which confirms recent theoretical calculations. At low temperatures and high doping levels, the In profiles show an extended tail that could reflect an enhanced diffusion at the beginning of the annealing

    Small Angle Scattering by Fractal Aggregates: A Numerical Investigation of the Crossover Between the Fractal Regime and the Porod Regime

    Full text link
    Fractal aggregates are built on a computer using off-lattice cluster-cluster aggregation models. The aggregates are made of spherical particles of different sizes distributed according to a Gaussian-like distribution characterised by a mean a0a_0 and a standard deviation σ\sigma. The wave vector dependent scattered intensity I(q)I(q) is computed in order to study the influence of the particle polydispersity on the crossover between the fractal regime and the Porod regime. It is shown that, given a0a_0, the location qcq_c of the crossover decreases as σ\sigma increases. The dependence of qcq_c on σ\sigma can be understood from the evolution of the shape of the center-to-center interparticle-distance distribution function.Comment: RevTex, 4 pages + 6 postscript figures, compressed using "uufiles", published in Phys. Rev. B 50, 1305 (1994

    The spectrum of the recycled PSR J0437-4715 and its white dwarf companion

    Full text link
    We present extensive spectral and photometric observations of the recycled pulsar/white-dwarf binary containing PSR J0437-4715, which we analyzed together with archival X-ray and gamma-ray data, to obtain the complete mid-infrared to gamma-ray spectrum. We first fit each part of the spectrum separately, and then the whole multi-wavelength spectrum. We find that the optical-infrared part of the spectrum is well fit by a cool white dwarf atmosphere model with pure hydrogen composition. The model atmosphere (Teff = 3950pm150K, log g=6.98pm0.15, R_WD=(1.9pm0.2)e9 cm) fits our spectral data remarkably well for the known mass and distance (M=0.25pm0.02Msun, d=156.3pm1.3pc), yielding the white dwarf age (tau=6.0pm0.5Gyr). In the UV, we find a spectral shape consistent with thermal emission from the bulk of the neutron star surface, with surface temperature between 1.25e5 and 3.5e5K. The temperature of the thermal spectrum suggests that some heating mechanism operates throughout the life of the neutron star. The temperature distribution on the neutron star surface is non-uniform. In the X-rays, we confirm the presence of a high-energy tail which is consistent with a continuation of the cut-off power-law component (Gamma=1.56pm0.01, Ecut=1.1pm0.2GeV) that is seen in gamma-rays and perhaps even extends to the near-UV.Comment: 23 pages. To appear in Ap

    The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering

    Get PDF
    We studied the periodicity of the multilamellar membrane system of granal chloroplasts in different isolated plant thylakoid membranes, using different suspension media, as well as on different detached leaves and isolated protoplasts—using small-angle neutron scattering. Freshly isolated thylakoid membranes suspended in isotonic or hypertonic media, containing sorbitol supplemented with cations, displayed Bragg peaks typically between 0.019 and 0.023 Å− 1, corresponding to spatially and statistically averaged repeat distance values of about 275–330 Å. Similar data obtained earlier led us in previous work to propose an origin from the periodicity of stroma thylakoid membranes. However, detached leaves, of eleven different species, infiltrated with or soaked in D2O in dim laboratory light or transpired with D2O prior to measurements, exhibited considerably smaller repeat distances, typically between 210 and 230 Å, ruling out a stromal membrane origin. Similar values were obtained on isolated tobacco and spinach protoplasts. When NaCl was used as osmoticum, the Bragg peaks of isolated thylakoid membranes almost coincided with those in the same batch of leaves and the repeat distances were very close to the electron microscopically determined values in the grana. Although neutron scattering and electron microscopy yield somewhat different values, which is not fully understood, we can conclude that small-angle neutron scattering is a suitable technique to study the periodic organization of granal thylakoid membranes in intact leaves under physiological conditions and with a time resolution of minutes or shorter. We also show here, for the first time on leaves, that the periodicity of thylakoid membranes in situ responds dynamically to moderately strong illumination. This article is part of a Special Issue entitled: Photosynthesis research for sustainability: Keys to produce clean energy

    Evidence for structural and electronic instabilities at intermediate temperatures in κ\kappa-(BEDT-TTF)2_{2}X for X=Cu[N(CN)2_{2}]Cl, Cu[N(CN)2_{2}]Br and Cu(NCS)2_{2}: Implications for the phase diagram of these quasi-2D organic superconductors

    Full text link
    We present high-resolution measurements of the coefficient of thermal expansion α(T)=lnl(T)/T\alpha (T)=\partial \ln l(T)/\partial T of the quasi-twodimensional (quasi-2D) salts κ\kappa-(BEDT-TTF)2_2X with X = Cu(NCS)2_2, Cu[N(CN)2_2]Br and Cu[N(CN)2_2]Cl. At intermediate temperatures (B), distinct anomalies reminiscent of second-order phase transitions have been found at T=38T^\ast = 38 K and 45 K for the superconducting X = Cu(NCS)2_2 and Cu[N(CN)2_2]Br salts, respectively. Most interestingly, we find that the signs of the uniaxial pressure coefficients of TT^\ast are strictly anticorrelated with those of TcT_c. We propose that TT^\ast marks the transition to a spin-density-wave (SDW) state forming on minor, quasi-1D parts of the Fermi surface. Our results are compatible with two competing order parameters that form on disjunct portions of the Fermi surface. At elevated temperatures (C), all compounds show α(T)\alpha (T) anomalies that can be identified with a kinetic, glass-like transition where, below a characteristic temperature TgT_g, disorder in the orientational degrees of freedom of the terminal ethylene groups becomes frozen in. We argue that the degree of disorder increases on going from the X = Cu(NCS)2_2 to Cu[N(CN)2_2]Br and the Cu[N(CN)2_2]Cl salt. Our results provide a natural explanation for the unusual time- and cooling-rate dependencies of the ground-state properties in the hydrogenated and deuterated Cu[N(CN)2_2]Br salts reported in the literature.Comment: 22 pages, 7 figure

    Modeling Single Electron Transfer in Si:P Double Quantum Dots

    Full text link
    Solid-state systems such as P donors in Si have considerable potential for realization of scalable quantum computation. Recent experimental work in this area has focused on implanted Si:P double quantum dots (DQDs) that represent a preliminary step towards the realization of single donor charge-based qubits. This paper focuses on the techniques involved in analyzing the charge transfer within such DQD devices and understanding the impact of fabrication parameters on this process. We show that misalignment between the buried dots and surface gates affects the charge transfer behavior and identify some of the challenges posed by reducing the size of the metallic dot to the few donor regime.Comment: 11 pages, 7 figures, submitted to Nanotechnolog

    Use of observing system simulation experiments in the United States

    Get PDF
    Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Bulletin of the American Meteorological Society 101(8), (2020): E1427-E1438, https://doi.org/10.1175/BAMS-D-19-0155.1.The NOAA Science Advisory Board appointed a task force to prepare a white paper on the use of observing system simulation experiments (OSSEs). Considering the importance and timeliness of this topic and based on this white paper, here we briefly review the use of OSSEs in the United States, discuss their values and limitations, and develop five recommendations for moving forward: national coordination of relevant research efforts, acceleration of OSSE development for Earth system models, consideration of the potential impact on OSSEs of deficiencies in the current data assimilation and prediction system, innovative and new applications of OSSEs, and extension of OSSEs to societal impacts. OSSEs can be complemented by calculations of forecast sensitivity to observations, which simultaneously evaluate the impact of different observation types in a forecast model system
    corecore