349 research outputs found

    Saving Lives: The Principle of Distinction and the Realities of Modern War

    Get PDF
    WOS: 000332942700005PubMed ID: 24778561In this study, we assessed the feasibility of fetal RhD genotyping by analysis of cell-free fetal DNA(cffDNA) extracted from plasma samples of Rhesus (Rh) D-negative pregnant women by using real-time polymerase chain reaction (PCR). Fetal genotyping was performed on 30 RhD-negative women between 9 and 39 weeks of gestation who were referred to us for invasive testing [amniocentesis/chorionic villi sampling (CVS)]. The fetal RHD genotype was determined based on real-time PCR method. Exons 7 and 10 of the RHD and SRY genes were targeted. Among the pregnant women, 12 were carrying male and 17 were carrying female fetuses. Out of 29 pregnant women, 21 had RhD-positive and nine had RhD-negative fetuses. One sample) case 12, whose blood group was found to be AB Rh [+] (was excluded due to controversial results from repeated serological analyses. All prenatal results were in concordance with postnatal RhD status and fetal sex without false-positive or -negative results. Performing real-time PCR on cffDNA showed accurate, efficient and reliable results, allowing rapid and high throughput non invasive determination of fetal sex and RhD status in clinical samples

    Clinical spectrum of early onset “Mediterranean” (homozygous p.P131L mutation) mitochondrial neurogastrointestinal encephalomyopathy

    Get PDF
    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is an autosomal recessive mitochondrial disorder characterized by cumulative and progressive gastrointestinal and neurological findings. This retrospective observational study, aimed to explore the time of presentation, diagnosis and clinical follow-up of 13 patients with a confirmed MNGIE disease of Mediterranean origin. The mean age of symptom onset was 7 years (6 months−21 years) and the average diagnosis age was 15.4 years ±8.4. Four of 13 patients (30%) died before 30 years at the mean age of 19.7 years ±6.8. Cachexia and gastrointestinal symptoms were observed in all patients (100%). The mean body mass index standard deviation score at diagnosis was 4.8 ± 2.8. At least three subocclusive episodes were presented in patients who died in last year of their life. The main neurological symptom found in most patients was peripheral neuropathy (92%). Ten patients (77%) had leukoencephalopathy and the remaining three patients without were under 10 years of age. The new homozygous “Mediterranean” TYMP mutation, p.P131L (c.392 C > T) was associated with an early presentation and poor prognosis in nine patients (69%) from five separates families. Based on the observations from this Mediterranean MNGIE cohort, we propose that the unexplained abdominal pain combined with cachexia is an indicator of MNGIE. High-platelet counts and nerve conduction studies may be supportive laboratory findings and the frequent subocclusive episodes could be a negative prognostic factor for mortality. Finally, the homozygous p.P131L (c.392 C > T) mutation could be associated with rapid progressive disease with poor prognosis

    Cystic fibrosis mutations and associated haplotypes in Turkish cystic fibrosis patients

    Get PDF
    Identification of mutations causing cystic fibrosis (CF) in the Turkish population is essential for assessment of the molecular basis of CF in Turkey and the development of strategies for prenatal diagnosis and genetic counseling. Here, we present an updated report of mutations found in the Turkish CF population from an extensive screening study of the entire coding region, including exon-intron boundaries and the promoter region. Cases for which mutations could not be identified were also screened for previously defined large alterations and (TG) mT n-M470V loci. This study revealed a total of 27 different mutations accounting for almost 60% of disease genes in the Turkish population. In this study, we also identified the haplotypes associated with 17 mutations and those associated with unknown mutations. The mutation spectrum of CF in Turkey and its associated haplotypes indicated the presence of a major Mediterranean component in the contemporary Turkish population.published_or_final_versio

    Human DNA polymerase ÎČ polymorphism, Arg137Gln, impairs its polymerase activity and interaction with PCNA and the cellular base excision repair capacity

    Get PDF
    DNA polymerase ÎČ (Pol ÎČ) is a key enzyme in DNA base excision repair, and an important factor for maintaining genome integrity and stability. More than 30% of human tumors characterized to date express DNA Pol ÎČ variants, many of which result from a single nucleotide residue substitution. However, in most cases, their precise functional deficiency and relationship to cancer susceptibility are still unknown. In the current work, we show that a polymorphism encoding an arginine to glutamine substitution, R137Q, has lower polymerase activity. The substitution also affects the interaction between Pol ÎČ and proliferating cell nuclear antigen (PCNA). These defects impair the DNA repair capacity of Pol ÎČ in reconstitution assays, as well as in cellular extracts. Expression of wild-type Pol ÎČ in pol ÎČ−/− mouse embryonic fibroblast (MEF) cells restored cellular resistance to DNA damaging reagents such as methyl methanesulfonate (MMS) and N-methyl-N-nitrosourea (MNU), while expression of R137Q in pol ÎČ−/− MEF cells failed to do so. These data indicate that polymorphisms in base excision repair genes may contribute to the onset and development of cancers

    Combined effect of CCND1 and COMT polymorphisms and increased breast cancer risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Estrogens are crucial tumorigenic hormones, which impact the cell growth and proliferation during breast cancer development. Estrogens are metabolized by a series of enzymes including COMT, which converts catechol estrogens into biologically non-hazardous methoxyestrogens. Several studies have also shown the relationship between estrogen and cell cycle progression through activation of CCND1 transcription.</p> <p>Methods</p> <p>In this study, we have investigated the independent and the combined effects of commonly occurring CCND1 (Pro241Pro, A870G) and COMT (Met108/158Val) polymorphisms to breast cancer risk in two independent Caucasian populations from Ontario (1228 breast cancer cases and 719 population controls) and Finland (728 breast cancer cases and 687 population controls). Both COMT and CCND1 polymorphisms have been previously shown to impact on the enzymatic activity of the coded proteins.</p> <p>Results</p> <p>Here, we have shown that the high enzymatic activity genotype of CCND1<sup>High </sup>(AA) was associated with increased breast cancer risk in both the Ontario [OR: 1.3, 95%CI (1.0–1.69)] and the Finland sample [OR: 1.4, 95%CI (1.01–1.84)]. The heterozygous COMT<sup>Medium </sup>(MetVal) and the high enzymatic activity of COMT<sup>High </sup>(ValVal) genotype was also associated with breast cancer risk in Ontario cases, [OR: 1.3, 95%CI (1.07–1.68)] and [OR: 1.4, 95%CI (1.07–1.81)], respectively. However, there was neither a statistically significant association nor increased trend of breast cancer risk with COMT<sup>High </sup>(ValVal) genotypes in the Finland cases [OR: 1.0, 95%CI (0.73–1.39)]. In the combined analysis, the higher activity alleles of the COMT and CCND1 is associated with increased breast cancer risk in both Ontario [OR: <b>2.22</b>, 95%CI (1.49–3.28)] and Finland [OR: <b>1.73</b>, 95%CI (1.08–2.78)] populations studied. The trend test was statistically significant in both the Ontario and Finland populations across the genotypes associated with increasing enzymatic activity.</p> <p>Conclusion</p> <p>Using two independent Caucasian populations, we have shown a stronger combined effect of the two commonly occurring CCND1 and COMT genotypes in the context of breast cancer predisposition.</p

    ERBB2 in Cat Mammary Neoplasias Disclosed a Positive Correlation between RNA and Protein Low Expression Levels: A Model for erbB-2 Negative Human Breast Cancer

    Get PDF
    Human ERBB2 is a proto-oncogene that codes for the erbB-2 epithelial growth factor receptor. In human breast cancer (HBC), erbB-2 protein overexpression has been repeatedly correlated with poor prognosis. In more recent works, underexpression of this gene has been described in HBC. Moreover, it is also recognised that oncogenes that are commonly amplified or deleted encompass point mutations, and some of these are associated with HBC. In cat mammary lesions (CMLs), the overexpression of ERBB2 (27%–59.6%) has also been described, mostly at the protein level and although cat mammary neoplasias are considered to be a natural model of HBC, molecular information is still scarce. In the present work, a cat ERBB2 fragment, comprising exons 10 to 15 (ERBB2_10–15) was achieved for the first time. Allelic variants and genomic haplotype analyses were also performed, and differences between normal and CML populations were observed. Three amino acid changes, corresponding to 3 non-synonymous genomic sequence variants that were only detected in CMLs, were proposed to damage the 3D structure of the protein. We analysed the cat ERBB2 gene at the DNA (copy number determination), mRNA (expression levels assessment) and protein levels (in extra- and intra protein domains) in CML samples and correlated the last two evaluations with clinicopathological features. We found a positive correlation between the expression levels of the ERBB2 RNA and erbB-2 protein, corresponding to the intracellular region. Additionally, we detected a positive correlation between higher mRNA expression and better clinical outcome. Our results suggest that the ERBB2 gene is post-transcriptionally regulated and that proteins with truncations and single point mutations are present in cat mammary neoplastic lesions. We would like to emphasise that the recurrent occurrence of low erbB-2 expression levels in cat mammary tumours, suggests the cat mammary neoplasias as a valuable model for erbB-2 negative HBC.POCI/CVT/62940/2004 and by the PhD grants (SFRH/BD/23406/2005 and SFRH/BD/31754/2006, of the Science and Technology Foundation (FCT) from Portugal

    SNP-SNP interactions in breast cancer susceptibility

    Get PDF
    BACKGROUND: Breast cancer predisposition genes identified to date (e.g., BRCA1 and BRCA2) are responsible for less than 5% of all breast cancer cases. Many studies have shown that the cancer risks associated with individual commonly occurring single nucleotide polymorphisms (SNPs) are incremental. However, polygenic models suggest that multiple commonly occurring low to modestly penetrant SNPs of cancer related genes might have a greater effect on a disease when considered in combination. METHODS: In an attempt to identify the breast cancer risk conferred by SNP interactions, we have studied 19 SNPs from genes involved in major cancer related pathways. All SNPs were genotyped by TaqMan 5'nuclease assay. The association between the case-control status and each individual SNP, measured by the odds ratio and its corresponding 95% confidence interval, was estimated using unconditional logistic regression models. At the second stage, two-way interactions were investigated using multivariate logistic models. The robustness of the interactions, which were observed among SNPs with stronger functional evidence, was assessed using a bootstrap approach, and correction for multiple testing based on the false discovery rate (FDR) principle. RESULTS: None of these SNPs contributed to breast cancer risk individually. However, we have demonstrated evidence for gene-gene (SNP-SNP) interaction among these SNPs, which were associated with increased breast cancer risk. Our study suggests cross talk between the SNPs of the DNA repair and immune system (XPD-[Lys751Gln] and IL10-[G(-1082)A]), cell cycle and estrogen metabolism (CCND1-[Pro241Pro] and COMT-[Met108/158Val]), cell cycle and DNA repair (BARD1-[Pro24Ser] and XPD-[Lys751Gln]), and within carcinogen metabolism (GSTP1-[Ile105Val] and COMT-[Met108/158Val]) pathways. CONCLUSION: The importance of these pathways and their communication in breast cancer predisposition has been emphasized previously, but their biological interactions through SNPs have not been described. The strategy used here has the potential to identify complex biological links among breast cancer genes and processes. This will provide novel biological information, which will ultimately improve breast cancer risk management

    Iscador Qu inhibits doxorubicin-induced senescence of MCF7 cells

    Get PDF
    Chemotherapy in patients with inoperable or advanced breast cancer inevitably results in low-dose exposure of tumor-cell subset and senescence. Metabolically active senescent cells secrete multiple tumor promoting factors making their elimination a therapeutic priority. Viscum album is one of the most widely used alternative anti-cancer medicines facilitating chemotherapy tolerance of breast cancer patients. The aim of this study was to model and investigate how Viscum album extracts execute additive anti-tumor activity with low-dose Dox using ER + MCF7 breast cancer cells. We report that cotreatment of MCF7 with Viscum album and Dox abrogates G2/M cycle arrest replacing senescence with intrinsic apoptotic program. Mechanistically, this switch was associated with down-regulation of p21, p53/p73 as well as Erk1/2 and p38 activation. Our findings, therefore, identify a novel mechanistic axis of additive antitumor activity of Viscum album and low dose-Dox. In conclusion, ER + breast cancer patients may benefit from addition of Viscum album to low-dose Dox chemotherapy due to suppression of cancer cell senescence and induction of apoptosis

    The association of polymorphisms in hormone metabolism pathway genes, menopausal hormone therapy, and breast cancer risk: a nested case-control study in the California Teachers Study cohort

    Get PDF
    Abstract Introduction The female sex steroids estrogen and progesterone are important in breast cancer etiology. It therefore seems plausible that variation in genes involved in metabolism of these hormones may affect breast cancer risk, and that these associations may vary depending on menopausal status and use of hormone therapy. Methods We conducted a nested case-control study of breast cancer in the California Teachers Study cohort. We analyzed 317 tagging single nucleotide polymorphisms (SNPs) in 24 hormone pathway genes in 2746 non-Hispanic white women: 1351 cases and 1395 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by fitting conditional logistic regression models using all women or subgroups of women defined by menopausal status and hormone therapy use. P values were adjusted for multiple correlated tests (P ACT). Results The strongest associations were observed for SNPs in SLCO1B1, a solute carrier organic anion transporter gene, which transports estradiol-17ÎČ-glucuronide and estrone-3-sulfate from the blood into hepatocytes. Ten of 38 tagging SNPs of SLCO1B1 showed significant associations with postmenopausal breast cancer risk; 5 SNPs (rs11045777, rs11045773, rs16923519, rs4149057, rs11045884) remained statistically significant after adjusting for multiple testing within this gene (P ACT = 0.019-0.046). In postmenopausal women who were using combined estrogen-progestin therapy (EPT) at cohort enrollment, the OR of breast cancer was 2.31 (95% CI = 1.47-3.62) per minor allele of rs4149013 in SLCO1B1 (P = 0.0003; within-gene P ACT = 0.002; overall P ACT = 0.023). SNPs in other hormone pathway genes evaluated in this study were not associated with breast cancer risk in premenopausal or postmenopausal women. Conclusions We found evidence that genetic variation in SLCO1B1 is associated with breast cancer risk in postmenopausal women, particularly among those using EPT
    • 

    corecore