414 research outputs found

    Rayleigh superradiance and dynamic Bragg gratings in an end-pumped Bose-Einstein condensate

    Full text link
    We study experimentally superradiant Rayleigh scattering from a Bose-Einstein condensate (BEC) in a new parameter regime where pump depletion and the exchange of photons between the endfire modes are important. Through experiments and simulations we show that collective atom light coupling leads to the self-organized formation of dynamic Bragg gratings within the sample. These gratings lead to an efficient back-scattering of pump photons and optical resonator structures within the BEC.Comment: 5 pages, 3 figure

    Slow touch and ultrafast pain fibres: Revisiting peripheral nerve classification.

    Get PDF
    One hundred years ago, Erlanger and Gasser demonstrated that conduction velocity is correlated with the diameter of a peripheral nerve axon. Later, they also demonstrated that the functional role of the axon is related to its diameter: touch is signalled by large-diameter axons, whereas pain and temperature are signalled by small-diameter axons. Certain discoveries in recent decades prompt a modification of this canonical classification. Here, we review the evidence for unmyelinated (C) fibres signalling touch at a slow conduction velocity and likely contributing to affective aspects of tactile information. We also review the evidence for large-diameter Aβ afferents signalling pain at ultrafast conduction velocity and likely contributing to the rapid nociceptive withdrawal reflex. These discoveries imply that conduction velocity is not as clear-cut an indication of the functional role of the axon as previously thought. We finally suggest that a future taxonomy of the peripheral afferent nervous system might be based on the combination of the axońs molecular expression and electrophysiological response properties

    The Effects of Ageing on Tactile Function in Humans

    Get PDF
    Ageing is accompanied by a steady decline in touch sensitivity and acuity. Conversely, pleasant touch, such as experienced during a caress, is even more pleasant in old age. There are many physiological changes that might explain these perceptual changes, but researchers have not yet identified any specific mechanisms. Here, we review both the perceptual and structural changes to the touch system that are associated with ageing. The structural changes include reduced elasticity of the skin in older people, as well as reduced numbers and altered morphology of skin tactile receptors. Effects of ageing on the peripheral and central nervous systems include demyelination, which affects the timing of neural signals, as well as reduced numbers of peripheral nerve fibres. The ageing brain also undergoes complex changes in blood flow, metabolism, plasticity, neurotransmitter function, and, for touch, the body map in primary somatosensory cortex. Although several studies have attempted to find a direct link between perceptual and structural changes, this has proved surprisingly elusive. We also highlight the need for more evidence regarding age-related changes in peripheral nerve function in the hairy skin, as well as the social and emotional aspects of touch

    A topographical and physiological exploration of C-tactile afferents and their response to menthol and histamine

    Get PDF
    Unmyelinated tactile (C-tactile or CT) afferents are abundant in arm hairy skin and have been suggested to signal features of social affective touch. Here, we recorded from unmyelinated low-threshold mechanosensitive afferents in the peroneal and radial nerves. The most distal receptive fields were located on the proximal phalanx of the third finger for the superficial branch of the radial nerve and near the lateral malleolus for the peroneal nerve. We found that the physiological properties with regard to conduction velocity and mechanical threshold, as well as their tuning to brush velocity, were similar in CT units across the antebrachial (n = 27), radial (n = 8), and peroneal (n = 4) nerves. Moreover, we found that although CT afferents are readily found during microneurography of the arm nerves, they appear to be much more sparse in the lower leg compared with C-nociceptors. We continued to explore CT afferents with regard to their chemical sensitivity and found that they could not be activated by topical application to their receptive field of either the cooling agent menthol or the pruritogen histamine. In light of previous studies showing the combined effects that temperature and mechanical stimuli have on these neurons, these findings add to the growing body of research suggesting that CT afferents constitute a unique class of sensory afferents with highly specialized mechanisms for transducing gentle touch

    Haptic pop-out of movable stimuli

    Get PDF
    When, in visual and haptic search, a target is easily found among distractors, this is called a pop-out effect. The target feature is then believed to be salient, and the search is performed in a parallel way. We investigated this effect with movable stimuli in a haptic search task. The task was to find a movable ball among anchored distractors or the other way round. Results show that reaction times were independent of the number of distractors if the movable ball was the target but increased with the number of items if the anchored ball was the target. Analysis of hand movements revealed a parallel search strategy, shorter movement paths, a higher average movement speed, and a narrower direction distribution with the movable target, as compared with a more detailed search for an anchored target. Taken together, these results show that a movable object pops out between anchored objects and this indicates that movability is a salient object feature. Vibratory signals resulting from the movable ball were found to be a reasonable explanation regarding the sensation responsible for the pop-out of movability

    C-tactile afferent stimulating touch carries a positive affective value

    Get PDF
    The rewarding sensation of touch in affiliative interactions is hypothesized to be underpinned by a specialized system of nerve fibers called C-Tactile afferents (CTs), which respond optimally to slowly moving, gentle touch, typical of a caress. However, empirical evidence to support the theory that CTs encode socially relevant, rewarding tactile information in humans is currently limited. While in healthy participants, touch applied at CT optimal velocities (1-10cm/sec) is reliably rated as subjectively pleasant, neuronopathy patients lacking large myelinated afferents, but with intact C-fibres, report that the conscious sensation elicited by stimulation of CTs is rather vague. Given this weak perceptual impact the value of self-report measures for assessing the specific affective value of CT activating touch appears limited. Therefore, we combined subjective ratings of touch pleasantness with implicit measures of affective state (facial electromyography) and autonomic arousal (heart rate) to determine whether CT activation carries a positive affective value. We recorded the activity of two key emotion-relevant facial muscle sites (zygomaticus major—smile muscle, positive affect & corrugator supercilii—frown muscle, negative affect) while participants evaluated the pleasantness of experimenter administered stroking touch, delivered using a soft brush, at two velocities (CT optimal 3cm/sec & CT non-optimal 30cm/sec), on two skin sites (CT innervated forearm & non-CT innervated palm). On both sites, 3cm/sec stroking touch was rated as more pleasant and produced greater heart rate deceleration than 30cm/sec stimulation. However, neither self-report ratings nor heart rate responses discriminated stimulation on the CT innervated arm from stroking of the non-CT innervated palm. In contrast, significantly greater activation of the zygomaticus major (smiling muscle) was seen specifically to CT optimal, 3cm/sec, stroking on the forearm in comparison to all other stimuli. These results offer the first empirical evidence in humans that tactile stimulation that optimally activates CTs carries a positive affective valence that can be measured implicitly

    A psychophysical and neuroimaging analysis of genital hedonic sensation in men

    Get PDF
    Current understanding of human genital-brain interactions relates primarily to neuroendocrine and autonomic control, whereas interactions during sexual stimulation remain largely unexplored. Here we present a systematic approach towards identifying how the human brain encodes sensory genital information. Using a validated affective touch paradigm and functional magnetic resonance imaging, we found that hedonic responses to discriminatory versus affective tactile stimulation were distinctly different for both penile shaft and forearm. This suggests that, as with other body sites, genital skin contains small diameter mechanoreceptive nerve fibres that signal pleasant touch. In the brain, secondary somatosensory cortex (S2) distinguished between affective and discriminative touch for the penile shaft, but not for the forearm. Frenulum stimulation induced the greatest reports of subjective pleasure and led to the greatest deactivation of the default-mode network. This study represents a first pass at investigating, in humans, the relationship between innervation of genital surfaces, hedonic feelings, and brain mechanisms, in a systematic way

    Human foot outperforms the hand in mechanical pain discrimination

    Get PDF
    Tactile discrimination has been extensively studied, but mechanical pain discrimination remains poorly characterised. Here, we measured the capacity for mechanical pain discrimination using a two-alternative forced choice paradigm, with force-calibrated indentation stimuli (Semmes-Weinstein monofilaments) applied to the hand and foot dorsa of healthy human volunteers. In order to characterise the relationship between peripheral nociceptor activity and pain perception, we recorded single-unit activity from myelinated (A) and unmyelinated (C) mechanosensitive nociceptors in the skin using microneurography. At the perceptual level, we found that the foot was better at discriminating noxious forces than the hand, which stands in contrast to that for innocuous force discrimination, where the hand performed better than the foot. This observation of superior mechanical pain discrimination on the foot compared to the hand could not be explained by the responsiveness of individual nociceptors. We found no significant difference in the discrimination performance of either the myelinated or unmyelinated class of nociceptors between skin regions. This suggests the possibility that other factors such as skin biophysics, receptor density or central mechanisms may underlie these regional differences
    • …
    corecore