193 research outputs found

    Observation of mesospheric air inside the arctic stratospheric polar vortex in early 2003

    Get PDF
    During several balloon flights inside the Arctic polar vortex in early 2003, unusual trace gas distributions were observed, which indicate a strong influence of mesospheric air in the stratosphere. The tuneable diode laser (TDL) instrument SPIRALE (Spectroscopie InFrarouge par Absorption de Lasers Embarqués) measured unusually high CO values (up to 600 ppb) on 27 January at about 30 km altitude. The cryosampler BONBON sampled air masses with very high molecular Hydrogen, extremely low SF6 and enhanced CO values on 6 March at about 25 km altitude. Finally, the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) Fourier Transform Infra-Red (FTIR) spectrometer showed NOy values which are significantly higher than NOy* (the NOy derived from a correlation between N2O and NOy under undisturbed conditions), on 21 and 22 March in a layer centred at 22 km altitude. Thus, the mesospheric air seems to have been present in a layer descending from about 30 km in late January to 25 km altitude in early March and about 22 km altitude on 20 March. We present corroborating evidence from a model study using the KASIMA (KArlsruhe Simulation model of the Middle Atmosphere) model that also shows a layer of mesospheric air, which descended into the stratosphere in November and early December 2002, before the minor warming which occurred in late December 2002 lead to a descent of upper stratospheric air, cutting of a layer in which mesospheric air is present. This layer then descended inside the vortex over the course of the winter. The same feature is found in trajectory calculations, based on a large number of trajectories started in the vicinity of the observations on 6 March. Based on the difference between the mean age derived from SF6 (which has an irreversible mesospheric loss) and from CO2 (whose mesospheric loss is much smaller and reversible) we estimate that the fraction of mesospheric air in the layer observed on 6 March, must have been somewhere between 35% and 100%

    Detection of organic compound signatures in infra-red, limb emission spectra observed by the MIPAS-B2 instrument

    No full text
    International audienceOrganic compounds play a central role in troposphere chemistry and increasingly are a viable target for remote sensing observations. In this paper, infra-red spectral features of three organic compounds are investigated in thermal emission spectra recorded by a balloon-borne instrument, MIPAS-B2, operating at high spectral resolution. It is demonstrated, for the first time, that PAN and acetone can be detected in infra-red remote sensing spectra of the upper troposphere; detection results are presented at tangent altitudes of 10.4 km and 7.5 km (not acetone). In addition, the results provide the first observation of spectral features of formic acid in thermal emission, as opposed to solar occultation, and confirm that concentrations of this gas are likely to be measurable in the free troposphere, given accurate spectroscopic data. For PAN, two bands are observed centred at 794 cm?1 and 1163 cm?1. For acetone and formic acid, one band has been detected for each so far with band centres at 1218 cm?1 and 1105 cm?1 respectively. Mixing ratios inferred at 10.4 km tangent altitude are 180 pptv and 530 pptv for PAN and acetone respectively, and 200 pptv for formic acid with HITRAN 2000 spectroscopy. Accuracies are on the order of 30 to 50%. The detection technique applied here is verified by examining weak but known signatures of CFC-12 and HCFC-22 in the same spectral regions as those of the organic compounds, with results confirming the quality of both the instrument and the radiative transfer model. The results suggest the possibility of global sensing of the organic compounds studied here which would be a major step forward in verifying and interpreting global tropospheric model calculations

    Towards a 3-D tomographic retrieval for the air-borne limb-imager GLORIA

    Get PDF
    GLORIA (Gimballed Limb Observer for Radiance Imaging of the Atmosphere) is a new remote sensing instrument essentially combining a Fourier transform infrared spectrometer with a two-dimensional (2-D) detector array in combination with a highly flexible gimbal mount. It will be housed in the belly pod of the German research aircraft HALO (High Altitude and Long Range Research Aircraft). It is unique in its combination of high spatial and state-of-the art spectral resolution. Furthermore, the horizontal view angle with respect to the aircraft flight direction can be varied from 45° to 135°. This allows for tomographic measurements of mesoscale events for a wide variety of atmospheric constituents. <br><br> In this paper, a tomographic retrieval scheme is presented, which is able to fully exploit the manifold radiance observations of the GLORIA limb sounder. The algorithm is optimized for massive 3-D retrievals of several hundred thousands of measurements and atmospheric constituents on common hardware. The new scheme is used to explore the capabilities of GLORIA to sound the atmosphere in full 3-D with respect to the choice of the flightpath and to different measurement modes of the instrument using ozone as a test species. It is demonstrated that the achievable resolution should approach 200 m vertically and 20 km–30 km horizontally. Finally, a comparison of the 3-D inversion with conventional 1-D inversions using the assumption of a horizontally homogeneous atmosphere is performed

    Technical Note: Intercomparison of ILAS-II version 2 and 1.4 trace species with MIPAS-B measurements

    Get PDF
    The Improved Limb Atmospheric Spectrometer (ILAS)-II sensor aboard the Japanese ADEOS-II satellite was launched into its sun-synchronous orbit on 14 December 2002 and performed solar occultation measurements of trace species, aerosols, temperature, and pressure in the polar stratosphere until 25 October 2003. Vertical trace gas profiles obtained with the balloon version of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS-B) provide one of the sparse data sets for validating ILAS-II version 2 and 1.4 data. The MIPAS-B limb emission spectra were collected on 20 March 2003 over Kiruna (Sweden, 68° N) at virtually the same location that has been sounded by ILAS-II about 5.5 h prior to the sampling of MIPAS-B. The intercomparison of the new ILAS-II version 2 (Northern Hemispheric sunrise) data to MIPAS-B vertical trace gas profiles shows a good to excellent agreement within the combined error limits for the species O<sub>3</sub>, N<sub>2</sub>O, CH<sub>4</sub>, H<sub>2</sub>O (above 21 km), HNO<sub>3</sub>, ClONO<sub>2</sub>, and CFC-11 (CCl<sub>3</sub>F) in the compared altitude range between 16 and 31 km such that these data appear to be very useful for scientific analysis. With regard to the previous version 1.4 ILAS-II data, significant improvements in the consistency with MIPAS-B are obvious especially for the species CH<sub>4</sub> and H<sub>2</sub>O, but also for O<sub>3</sub>, HNO<sub>3</sub>, ClONO<sub>2</sub>, NO<sub>2</sub>, and N<sub>2</sub>O<sub>5</sub>. However, comparing gases like NO<sub>2</sub>, N<sub>2</sub>O<sub>5</sub>, and CFC-12 (CCl<sub>2</sub>F<sub>2</sub>) exhibits only poor agreement with MIPAS-B such that these species cannot be assumed to be validated at the present time

    The MIPAS balloon borne trace constitutent experiment

    Get PDF
    A novel cryogenic Fourier transform spectrometer (FTS) has been developed for limb emission measurements in the mid IR-region from balloon-borne platforms. The FTS is a rapid scanning interferometer using a modified Michelson arrangement which allows a spectral resolution of 0.04 cm(exp -1) to be achieved. Solid carbon-dioxide cooling of the spectrometer and liquid-helium cooling of the detectors provide adequate sensitivity. The line of sight can be stabilized in terms of azimuth and elevation. A three-mirror off-axis telescope provides good vertical resolution and straylight rejection. Calibration is performed by high elevation and internal blackbody measurements. Four balloon flights were performed, two of them during spring turn-around 1989 and 1990 over mid-latitudes (Aire sur L'Adour, France, 44 deg N) and two near the northern polar circle in winter 1992 (Esrange, Sweden, 68 deg N). Limb emission spectra were collected from 32 km to 39 km floating altitudes covering tangent heights between the lower troposphere and the floating altitude. The trace gases CO2, H2O, O3, CH4, N2O, HNO3, N2O5, ClONO2, CF2Cl2, CFCl3, CHF2Cl, CCl4, and C2H6 have been identified in the measured spectra. The 1989 data have been analyzed to retrieve profiles of O3, HNO3, CFCl3 and CF2Cl2. The flights over Kiruna have provided the first ever reported profile measurements of the key reservoir species ClONO2 and N2O5 inside the polar vortex

    Formation of solid particles in synoptic-scale Arctic PSCs in early winter 2002/2003

    Get PDF
    International audiencePolar stratospheric clouds (PSC) have been observed in early winter (December 2002) during the SOLVE II/Vintersol campaign, both from balloons carrying comprehensive instrumentation for measurements of chemical composition, size distributions, and optical properties of the particles, as well as from individual backscatter soundings from Esrange and Sodankylä. The observations are unique in the sense that the PSC particles seem to have formed in the early winter under synoptic temperature conditions and not being influenced by mountain lee waves. A sequence of measurements during a 5-days period shows a gradual change between liquid and solid type PSCs with the development of a well-known sandwich structure. It appears that all PSC observations show the presence of a background population of solid particles, occasionally mixed in with more optically dominating liquid particles. The measurements have been compared with results from a detailed microphysical and optical simulation of the formation processes. Calculated extinctions are in good agreement with SAGE-III measurements from the same period. Apparently the solid particles are controlled by the synoptic temperature history while the presence of liquid particles is controlled by the local temperatures at the time of observation. The temperature histories indicate that the solid particles are nucleated above the ice frost point, and a surface freezing mechanism for this is included in the model. Reducing the calculated freezing rates by a factor 10-20, the model is able to simulate the observed particle size distributions and reproduce observed HNO3 gas phase concentrations

    MIPAS IMK/IAA CFC-11 (CCl3F) and CFC-12 (CCl2F2) Measurements: Accuracy, Precision and Long-Term Stability

    Get PDF
    Profiles of CFC-11 (CCl3F) and CFC-12 (CCl2F2) of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) aboard the European satellite Envisat have been retrieved from versions MIPAS/4.61 to MI-PAS/4.62 and MIPAS/5.02 to MIPAS/5.06 level-1b data using the scientific level-2 processor run by Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research (IMK) and Consejo Superior de Investigaciones Cientificas (CSIC), Instituto de Astrofisica de Andalucia (IAA). These profiles have been compared to measurements taken by the balloon-borne cryosampler, Mark IV (MkIV) and MIPAS-Balloon (MIPAS-B), the airborne MIPAS-STRatospheric aircraft (MIPAS-STR), the satellite-borne Atmospheric Chemistry Experiment Fourier transform spectrometer (ACE-FTS) and the High Resolution Dynamic Limb Sounder (HIRDLS), as well as the ground-based Halocarbon and other Atmospheric Trace Species (HATS) network for the reduced spectral resolution period (RR: January 2005-April 2012) of MIPAS. ACE-FTS, MkIV and HATS also provide measurements during the high spectral resolution period (full resolution, FR: July 2002-March 2004) and were used to validate MIPAS CFC-11 and CFC-12 products during that time, as well as profiles from the Improved Limb Atmospheric Spectrometer, ILAS-II. In general, we find that MIPAS shows slightly higher values for CFC-11 at the lower end of the profiles (below ~ 15 km) and in a comparison of HATS ground-based data and MIPAS measurements at 3 km below the tropopause. Differences range from approximately 10 to 50 pptv (~ 5-20 %) during the RR period. In general, differences are slightly smaller for the FR period. An indication of a slight high bias at the lower end of the profile exists for CFC-12 as well, but this bias is far less pronounced than for CFC-11 and is not as obvious in the relative differences between MIPAS and any of the comparison instruments. Differences at the lower end of the profile (below ~15 km) and in the comparison of HATS and MIPAS measurements taken at 3 km below the tropopause mainly stay within 10-50 pptv (corresponding to ~ 2-10% for CFC-12) for the RR and the FR period. Between similar to 15 and 30 km, most comparisons agree within 10-20 pptv (10-20 %), apart from ILAS-II, which shows large differences above similar to 17 km. Overall, relative differences are usually smaller for CFC-12 than for CFC-11. For both species -CFC-11 and CFC-12 - we find that differences at the lower end of the profile tend to be larger at higher latitudes than in tropical and subtropical regions. In addition, MIPAS profiles have a maximum in their mixing ratio around the tropopause, which is most obvious in tropical mean profiles. Comparisons of the standard deviation in a quiescent atmosphere (polar summer) show that only the CFC-12 FR error budget can fully explain the observed variability, while for the other products (CFC-11 FR and RR and CFC-12 RR) only two-thirds to three-quarters can be explained. Investigations regarding the temporal stability show very small negative drifts in MIPAS CFC-11 measurements. These instrument drifts vary between ~ 1 and 3% decade-1. For CFC-12, the drifts are also negative and close to zero up to similar to 30 km. Above that altitude, larger drifts of up to similar to 50% decade-1 appear which are negative up to similar to 35 km and positive, but of a similar magnitude, above
    corecore