1,584 research outputs found
Founders of Plant Ecology: Frederic and Edith Clements
Nineteenth-century students of Charles Bessey at the University of Nebraska, Frederic Clements and Edith Schwartz received doctorates in botany, married, and went on to become founders of the discipline of plant ecology. They tested and taught their theory of plant succession, known as Clementsian ecology, for nearly four decades at their Alpine laboratory in Colorado. Their leadership and influence at the Carnegie Institution was world-wide and attracted followers from several other disciplines. They advocated land use measures to combat the Dust Bowl in the 1930s. Clementsian ecology is still recognized as a paradigm against which other theories of nature are compared
Formation rates of complex organics in UV irradiated CH3OH-rich ices I: Experiments
(Abridged) Gas-phase complex organic molecules are commonly detected in the
warm inner regions of protostellar envelopes. Recent models show that
photochemistry in ices followed by desorption may explain the observed
abundances. This study aims to experimentally quantify the broad-band
UV-induced production rates of complex organics in CH3OH-rich ices at 20-70 K
under ultra-high vacuum conditions. The reaction products are mainly identified
by RAIRS and TPD experiments. Complex organics are readily formed in all
experiments, both during irradiation and during a slow warm-up of the ices to
200 K after the UV lamp is turned off. The relative abundances of photoproducts
depend on the UV fluence, the ice temperature, and whether pure CH3OH ice or
CH3OH:CH4/CO ice mixtures are used. C2H6, CH3CHO, CH3CH2OH, CH3OCH3, HCOOCH3,
HOCH2CHO and (CH2OH)2 are all detected in at least one experiment. The derived
product-formation yields and their dependences on different experimental
parameters, such as the initial ice composition, are used to estimate the CH3OH
photodissociation branching ratios in ice and the relative diffusion barriers
of the formed radicals. The experiments show that ice photochemistry in CH3OH
ices is efficient enough to explain the observed abundances of complex organics
around protostars and that ratios of complex molecules can be used to constrain
their formation pathway.Comment: Accepted for publication in A&A. 65 pages including appendice
Analysis of the effects of baffles on combustion instability
An analytical model has been developed for predicting the effects of baffles on combustion instability. This model has been developed by coupling an acoustic analysis of the wave motion within baffled chambers with a model for the oscillatory combustion response of a propellant droplet developed by Heidmann. A computer program was developed for numerical solution of the resultant coupled equations. Diagnostic calculations were made to determine the reasons for the improper prediction. These calculations showed that the chosen method of representing the combustion response was a very poor approximation. At the end of the program, attempts were made to minimize this effect but the model still improperly predicts the stability trends. Therefore, it is recommended that additional analysis be done with an improved approximation
The diving beetles of the Kuril Archipelago in the Far East of Russia (Coleoptera: Dytiscidae).
Nach Literaturangaben sowie Untersuchungen von Museumsmaterial und Ausbeuten der in den letzten Jahren durchgeführten Expeditionen sind die Schwimmkäfer (Dytiscidae) auf den Kurilen im Nordwest-Pazifik mit 24 Arten vertreten. Über die 357 adulten und 50 larvalen Dytisciden, die während der gemeinsamen amerikanisch-japanisch-russischen Expedition 1994 und 1995 auf den südlichen und mittleren Kurilen gesammelt wurden, wird detailliert berichtet. Die folgenden fünf Arten werden erstmals für die Kurilen nachgewiesen: Hydroporus uenoi Nakane, Platambus pictipennis (Sharp), Agabus japonicus Sharp, Ilybius nakanei Nilsson, und Graphoderus zonatus (Hoppe). Die Zahl der auf den einzelnen Inseln festgestellten Arten lag zwischen 1 und 11; den höchsten Artenreichtum zeigen die größten Inseln auf beiden Seiten des Großen Kurilen-Kamms. Auf den südlichen Kurilen dominieren die ussurisch-japanischen Arten, die auch von Sakhalin und Hokkaido bekannt sind, während sich die Fauna der nördlichen Kurilen durch einen hohen Anteil holarktischer und paläarktischer Arten auszeichnet, die auch in Kamtschatka vorkommen.The species of predaceous diving beetles (Coleoptera, Dytiscidae) ocurring in the Kuril Archipelago in the northwest Pacific are reviewed. Based on literature records, the study of museum collections, and material from recent expeditions 24 species are known from the archipelago. A detailed report is given on the 357 adult and 50 larval specimens collected in the South and Mid Kuril Islands by the joint American-Japanese-Russian expeditions in 1994 and 1995. The following five species are here recorded from the Kurils for the first time: Hydroporus uenoi Nakane, Platambus pictipennis (Sharp), Agabus japonicus Sharp, Ilybius nakanei Nilsson, and Graphoderus zonatus (Hoppe). The number of species recorded on individual islands ranged from 1 to 11, with the largest islands at either end of the Greater Kuril Ridge being the most diverse. The South Kurils are dominated by Ussurian-Japanese species known also from Sakhalin and Hokkaido, whereas the North Kuril fauna includes a high proportion of Holarctic or Palearctic species known also from Kamchatka
Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges
We survey the current situation regarding chemical modelling of the synthesis
of molecules in the interstellar medium. The present state of knowledge
concerning the rate coefficients and their uncertainties for the major
gas-phase processes -- ion-neutral reactions, neutral-neutral reactions,
radiative association, and dissociative recombination -- is reviewed. Emphasis
is placed on those reactions that have been identified, by sensitivity
analyses, as 'crucial' in determining the predicted abundances of the species
observed in the interstellar medium. These sensitivity analyses have been
carried out for gas-phase models of three representative, molecule-rich,
astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the
expanding circumstellar envelope IRC +10216. Our review has led to the proposal
of new values and uncertainties for the rate coefficients of many of the key
reactions. The impact of these new data on the predicted abundances in TMC-1
and L134N is reported. Interstellar dust particles also influence the observed
abundances of molecules in the interstellar medium. Their role is included in
gas-grain, as distinct from gas-phase only, models. We review the methods for
incorporating both accretion onto, and reactions on, the surfaces of grains in
such models, as well as describing some recent experimental efforts to simulate
and examine relevant processes in the laboratory. These efforts include
experiments on the surface-catalysed recombination of hydrogen atoms, on
chemical processing on and in the ices that are known to exist on the surface
of interstellar grains, and on desorption processes, which may enable species
formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review
- …