12,618 research outputs found

    Analisis Faktor-faktor yang Mempengaruhi Perilaku Konsumen dalam Mengkonsumsi Daging Ayam Kampung di Kota Medan (Studi Kasus: Pasar Sambas, Medan)

    Full text link
    Tujuan dari penelitian ini adalah untuk mengetahui perkembangan permintaan konsumen terhadap daging ayam kampung dan harga ayam kampung; untuk mengetahui perilaku konsumen terhadap konsumsi daging ayam kampung di Kota Medan dan untuk menganalisis faktor-faktor yang mempengaruhi konsumsi daging ayam kampung di Pasar Sambas, Kota Medan. Metode analisis yang digunakan dalam penelitian ini adalah metode analisis regresi linier berganda menggunakan alat bantu SPSS 16. Penentuan daerah penelitian dilakukan secara purposive. Teknik pengambilan sampel dengan metode accidental sampling dengan jumlah sampel 30 konsumen. Penelitian ini dilakukan pada bulan Mei sampai Juli tahun 2013. Hasil penelitian menunjukkan bahwa dari hasil estimasi dapat diperoleh nilai determinasi (R2) sebesar 0,707. Hal ini berarti 70,7% variasi yang terjadi pada variabel umur, tingkat pendidikan, jumlah tanggungan, pendapatan dan harga daging ayam kampung dapat menjelaskan jumlah konsumsi daging ayam kampung, sedangkan 29,3% lagi dipengaruhi oleh variabel lain. Secara serempak menunjukkan bahwa dari keseluruhan variabel bebas memberikan pengaruh yang nyata terhadap jumlah konsumsi daging ayam kampung. Secara parsial variabel jumlah tanggungan dan pendapatan berpengaruh nyata terhadap jumlah konsumsi daging ayam kampung, sedangkan pada umur, tingkat pendidikan dan harga daging ayam kampung tidak berpengaruh nyata terhadap jumlah konsumsi daging ayam kampung

    Optimal leverage from non-ergodicity

    Full text link
    In modern portfolio theory, the balancing of expected returns on investments against uncertainties in those returns is aided by the use of utility functions. The Kelly criterion offers another approach, rooted in information theory, that always implies logarithmic utility. The two approaches seem incompatible, too loosely or too tightly constraining investors' risk preferences, from their respective perspectives. The conflict can be understood on the basis that the multiplicative models used in both approaches are non-ergodic which leads to ensemble-average returns differing from time-average returns in single realizations. The classic treatments, from the very beginning of probability theory, use ensemble-averages, whereas the Kelly-result is obtained by considering time-averages. Maximizing the time-average growth rates for an investment defines an optimal leverage, whereas growth rates derived from ensemble-average returns depend linearly on leverage. The latter measure can thus incentivize investors to maximize leverage, which is detrimental to time-average growth and overall market stability. The Sharpe ratio is insensitive to leverage. Its relation to optimal leverage is discussed. A better understanding of the significance of time-irreversibility and non-ergodicity and the resulting bounds on leverage may help policy makers in reshaping financial risk controls.Comment: 17 pages, 3 figures. Updated figures and extended discussion of ergodicit

    Retaining Expression on De-identified Faces

    Get PDF
    © Springer International Publishing AG 2017The extensive use of video surveillance along with advances in face recognition has ignited concerns about the privacy of the people identifiable in the recorded documents. A face de-identification algorithm, named k-Same, has been proposed by prior research and guarantees to thwart face recognition software. However, like many previous attempts in face de-identification, kSame fails to preserve the utility such as gender and expression of the original data. To overcome this, a new algorithm is proposed here to preserve data utility as well as protect privacy. In terms of utility preservation, this new algorithm is capable of preserving not only the category of the facial expression (e.g., happy or sad) but also the intensity of the expression. This new algorithm for face de-identification possesses a great potential especially with real-world images and videos as each facial expression in real life is a continuous motion consisting of images of the same expression with various degrees of intensity.Peer reviewe

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Quantum to Classical Transition in a Single-Ion Laser

    Full text link
    Stimulated emission of photons from a large number of atoms into the mode of a strong light field is the principle mechanism for lasing in "classical" lasers. The onset of lasing is marked by a threshold which can be characterised by a sharp increase in photon flux as a function of external pumping strength. The same is not necessarily true for the fundamental building block of a laser: a single trapped atom interacting with a single optical radiation mode. It has been shown that such a "quantum" laser can exhibit thresholdless lasing in the regime of strong coupling between atom and radiation field. However, although theoretically predicted, a threshold at the single-atom level could not be experimentally observed so far. Here, we demonstrate and characterise a single-atom laser with and without threshold behaviour by changing the strength of atom-light field coupling. We observe the establishment of a laser threshold through the accumulation of photons in the optical mode even for a mean photon number substantially lower than for the classical case. Furthermore, self-quenching occurs for very strong external pumping and constitutes an intrinsic limitation of single-atom lasers. Moreover, we find that the statistical properties of the emitted light can be adjusted for weak external pumping, from the quantum to the classical domain. Our observations mark an important step towards fundamental understanding of laser operation in the few-atom limit including systems based on semiconductor quantum dots or molecules.Comment: 19 pages, 4 figures, 10 pages supplement, accepted by Nature Physic

    A cardinal role for cathepsin D in co-ordinating the host-mediated apoptosis of macrophages and killing of pneumococci

    Get PDF
    The bactericidal function of macrophages against pneumococci is enhanced by their apoptotic demise, which is controlled by the anti-apoptotic protein Mcl-1. Here, we show that lysosomal membrane permeabilization (LMP) and cytosolic translocation of activated cathepsin D occur prior to activation of a mitochondrial pathway of macrophage apoptosis. Pharmacological inhibition or knockout of cathepsin D during pneumococcal infection blocked macrophage apoptosis. As a result of cathepsin D activation, Mcl-1 interacted with its ubiquitin ligase Mule and expression declined. Inhibition of cathepsin D had no effect on early bacterial killing but inhibited the late phase of apoptosis-associated killing of pneumococci in vitro. Mice bearing a cathepsin D-/- hematopoietic system demonstrated reduced macrophage apoptosis in vivo, with decreased clearance of pneumococci and enhanced recruitment of neutrophils to control pulmonary infection. These findings establish an unexpected role for a cathepsin D-mediated lysosomal pathway of apoptosis in pulmonary host defense and underscore the importance of apoptosis-associated microbial killing to macrophage function

    Floral temperature and optimal foraging: is heat a feasible floral reward for pollinators?

    Get PDF
    As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain
    corecore