Stimulated emission of photons from a large number of atoms into the mode of
a strong light field is the principle mechanism for lasing in "classical"
lasers. The onset of lasing is marked by a threshold which can be characterised
by a sharp increase in photon flux as a function of external pumping strength.
The same is not necessarily true for the fundamental building block of a laser:
a single trapped atom interacting with a single optical radiation mode. It has
been shown that such a "quantum" laser can exhibit thresholdless lasing in the
regime of strong coupling between atom and radiation field. However, although
theoretically predicted, a threshold at the single-atom level could not be
experimentally observed so far. Here, we demonstrate and characterise a
single-atom laser with and without threshold behaviour by changing the strength
of atom-light field coupling. We observe the establishment of a laser threshold
through the accumulation of photons in the optical mode even for a mean photon
number substantially lower than for the classical case. Furthermore,
self-quenching occurs for very strong external pumping and constitutes an
intrinsic limitation of single-atom lasers. Moreover, we find that the
statistical properties of the emitted light can be adjusted for weak external
pumping, from the quantum to the classical domain. Our observations mark an
important step towards fundamental understanding of laser operation in the
few-atom limit including systems based on semiconductor quantum dots or
molecules.Comment: 19 pages, 4 figures, 10 pages supplement, accepted by Nature Physic