207 research outputs found

    Radiation Yield and Radicals Produced in Irradiated Poly (Butylene Succinate)

    Full text link
    The main chemical effects of ionizing irradiation on polymers are crosslinking and chain scission. Both processes occur simultaneously and their yields determine the final results of processing. The radiation yield of crosslinking could be determined by several methods depending on the characteristics of the material and properties of the gel. Radiation parameters of gelation, such as gelation dose and ratio of scission yield to crosslinking yield, as well as their values were estimated. In this study, those parameters depend on the amount of Trimethallyl isocyanurate (TMAIC) in Poly(butylene succinate) (PBS), molecular weight of PBS, and irradiation condition. In the absence of TMAIC, higher molecular weight of PBS required less energy to start gelation process compare to lower molecular weight of PBS. While in the presence of TMAIC all of the PBS samples require similar energy to start gelation process. The existence of macroradicals were observed by Electron Spin Resonance measurements. The result showed that the spectra consisted of signals derived from radicals on carbon nearby carbonyl, and signals derived from radicals on carbon reside between two similar carbon on polymer, both of radicals lead to crosslinking

    Foetal development of the human gluteus maximus muscle with special reference to its fascial insertion

    Get PDF
    The human gluteus maximus muscle (GMX) is characterised by its insertion to the iliotibial tract (a lateral thick fascia of the thigh beneath the fascia lata), which plays a critical role in lateral stabilisation of the hip joint during walking. In contrast, in non-human primates, the GMX and biceps femoris muscle provide a flexor complex. According to our observations of 15 human embryos and 11 foetuses at 7–10 weeks of gestation (21–55 mm), the GMX anlage was divided into 1) a superior part that developed earlier and 2) a small inferior part that developed later. The latter was adjacent to, or even continuous with, the biceps femoris. At 8 weeks, both parts inserted into the femur, possibly the future gluteal tuberosity. However, depending on traction by the developing inferior part as well as pressure from the developing major trochanter of the femur, most of the original femoral insertion of the GMX appeared to be detached from the femur. Therefore, at 9–10 weeks, the GMX had a digastric muscle-like appearance with an intermediate band connecting the major superior part to the small inferior mass. This band, most likely corresponding to the initial iliotibial tract, extended laterally and distally far from the muscle fibres. The fascia lata was still thin and the tensor fasciae latae seemed to develop much later. It seems likely that the evolutionary transition from quadripedality to bipedality and a permanently upright posture would require the development of a new GMX complex with the iliotibial tract that differs from that in non-human primates. (Folia Morphol 2018; 77, 1: 144–150

    Exploring the logic of mobile search

    Get PDF
    After more than a decade of development work and hopes, the usage of mobile Internet has finally taken off. Now, we are witnessing the first signs of evidence of what might become the explosion of mobile content and applications that will be shaping the (mobile) Internet of the future. Similar to the wired Internet, search will become very relevant for the usage of mobile Internet. Current research on mobile search has applied a limited set of methodologies and has also generated a narrow outcome of meaningful results. This article covers new ground, exploring the use and visions of mobile search with a users' interview-based qualitative study. Its main conclusion builds upon the hypothesis that mobile search is sensitive to a mobile logic different than today's one. First, (advanced) users ask for accessing with their mobile devices the entire Internet, rather than subsections of it. Second, success is based on new added-value applications that exploit unique mobile functionalities. The authors interpret that such mobile logic involves fundamentally the use of personalised and context-based services

    A new APE1/Ref-1-dependent pathway leading to reduction of NF-κB and AP-1, and activation of their DNA-binding activity

    Get PDF
    APE1/Ref-1 is thought to be a multifunctional protein involved in reduction–oxidation (redox) regulation and base excision DNA repair, and is required for early embryonic development in mice. APE1/Ref-1 has redox activity and AP endonuclease activity, and is able to enhance DNA-binding activity of several transcription factors, including NF-κB, AP-1 and p53, through reduction of their critical cysteine residues. However, it remains elusive exactly how APE1/Ref-1 carries out its essential functions in vivo. Here, we show that APE1/Ref-1 not only reduces target transcription factors directly but also facilitates their reduction by other reducing molecules such as glutathione or thioredoxin. The new activity of APE1/Ref-1, termed redox chaperone activity, is exerted at concentration significantly lower than that required for its redox activity and is neither dependent on its redox activity nor on its AP endonuclease activity. We also show evidence that redox chaperone activity of APE1/Ref-1 is critical to NF-κB-mediated gene expression in human cells and is mediated through its physical association with target transcription factors. Thus, APE1/Ref-1 may play multiple roles in an antioxidative stress response pathway through its different biochemical activities. These findings also provide new insight into the mechanism of intracellular redox regulation

    Screening for Microsatellite Instability Identifies Frequent 3′-Untranslated Region Mutation of the RB1-Inducible Coiled-Coil 1 Gene in Colon Tumors

    Get PDF
    BACKGROUND: Coding region microsatellite instability (MSI) results in loss of gene products and promotion of microsatellite-unstable (MSI-H) carcinogenesis. Recent studies have indicated that MSI within 3'-untranslated regions (3'UTRs) may post-transcriptionally dysregulate gene products. Within this context, we conducted a broad mutational survey of 42 short 3'UTR microsatellites (MSs) in 45 MSI-H colorectal tumors and their corresponding normal colonic mucosae. METHODOLOGY/PRINCIPAL FINDINGS: In order to estimate the overall susceptibility of MSs to MSI in MSI-H tumors, the observed MSI frequency of each MS was correlated with its length, interspecies sequence conservation level, and distance from some genetic elements (i.e., stop codon, polyA signal, and microRNA binding sites). All MSs were stable in normal colonic mucosae. The MSI frequency at each MS in MSI-H tumors was independent of sequence conservation level and distance from other genetic elements. In contrast, MS length correlated significantly with MSI frequency in MSI-H tumors (r=0.86, p=7.2x10(-13)). 3'UTR MSs demonstrated MSI frequencies in MSI-H tumors higher than the 99% upper limit predicted by MS length for RB1-inducible coiled-coil 1(RB1CC1, mutation frequency 68.4%), NUAK family SNF1-like kinase 1(NUAK1, 31.0%), and Rtf1, Paf1/RNA polymerase II complex component, homolog (RTF1, 25.0%). An in silico prediction of RNA structure alterations was conducted for these MSI events to gauge their likelihood of affecting post-transcriptional regulation. RB1CC1 mutant was predicted to lose a microRNA-accessible loop structure at a putative binding site for the tumor-suppressive microRNA, miR-138. In contrast, the predicted 3'UTR structural change was minimal for NUAK1- and RTF1 mutants. Notably, real-time quantitative RT-PCR analysis revealed significant RB1CC1 mRNA overexpression vs. normal colonic mucosae in MSI-H cancers manifesting RB1CC1 3'UTR MSI (9.0-fold; p = 3.6x10(-4)). CONCLUSIONS: This mutational survey of well-characterized short 3'UTR MSs confirms that MSI incidence in MSI-H colorectal tumors correlates with MS length, but not with sequence conservation level or distance from other genetic elements. This study also identifies RB1CC1 as a novel target of frequent mutation and aberrant upregulation in MSI-H colorectal tumors. The predicted loss of a microRNA-accessible structure in mutant RB1CC1 RNA fits the hypothesis that 3'UTR MSI involves in aberrant RB1CC1 posttranscriptional upregulation. Further direct assessments are indicated to investigate this possibility.Bogdan C. Paun, Yulan Cheng, Barbara A. Leggett, Joanne Young, Stephen J. Meltzer, Yuriko Mor

    Epigenetically silenced miR-34b/c as a novel faecal-based screening marker for colorectal cancer

    Get PDF
    BACKGROUND: MicroRNAs are tiny non-coding small endogenous RNAs that regulate gene expression by translational repression, mRNA cleavage and mRNA inhibition. The aim of this study was to investigate the hypermethylation of miR-34b/c and miR-148a in colorectal cancer, and correlate this data to clinicopathological features. We also aimed to evaluate the hypermethylation of miR-34b/c in faeces specimens as a novel non-invasive faecal-DNA-based screening marker. METHODS: The 5-aza-2'-deoxycytidine treatment and methylation-specific PCR were carried out to detect the hypermethylation of miR-34b/c and miR-148a. RESULTS: The miR-34b/c hypermethylation was found in 97.5% (79 out of 82) of primary colorectal tumours, P=0.0110. In 75% (21 out of 28) of faecal specimens we found a hypermethylation of miR-34b/c while only in 16% (2 out of 12) of high-grade dysplasia. In addition, miR-148a was found to be hypermethylated in 65% (51 out of 78) of colorectal tumour tissues with no significant correlation to clinicopathological features. However, a trend with female gender and advanced age was found, P=0.083. We also observed a trend to lower survival rate in patients with miR-148a hypermethylation with 10-year survival probability: 48 vs 65%, P=0.561. CONCLUSIONS: These findings show that aberrant hypermethylation of miR-34b/c could be an ideal class of early screening marker, whereas miR-148a could serve as a disease progression follow-up marker

    The functional significance of microRNA-145 in prostate cancer

    Get PDF
    BackgroundMicroRNAs (miRNAs) are small noncoding RNAs that have important roles in numerous cellular processes. Recent studies have shown aberrant expression of miRNAs in prostate cancer tissues and cell lines. On the basis of miRNA microarray data, we found that miR-145 is significantly downregulated in prostate cancer.Methods and resultsWe investigated the expression and functional significance of miR-145 in prostate cancer. The expression of miR-145 was low in all the prostate cell lines tested (PC3, LNCaP and DU145) compared with the normal cell line, PWR-1E, and in cancerous regions of human prostate tissue when compared with the matched adjacent normal. Overexpression of miR-145 in PC3-transfected cells resulted in increased apoptosis and an increase in cells in the G2/M phase, as detected by flow cytometry. Investigation of the mechanisms of inactivation of miR-145 through epigenetic pathways revealed significant DNA methylation of the miR-145 promoter region in prostate cancer cell lines. Microarray analyses of miR-145-overexpressing PC3 cells showed upregulation of the pro-apoptotic gene TNFSF10, which was confirmed by real-time PCR and western analysis.ConclusionOne of the genes significantly upregulated by miR-145 overexpression is the proapoptotic gene TNFSF10. Therefore, modulation of miR-145 may be an important therapeutic approach for the management of prostate cancer
    corecore