9,695 research outputs found

    Evaluating Success in Public Health Advocacy Strategies

    Get PDF
    Advocacy is conducted by public health organisations with the aim to bring about policy improvement for better health outcomes. Implementation of a new policy usually requires a change in government practice, often to be managed by relatively conservative, and resistant, government agencies. To better understand the change process, relevant frameworks for managing transition can be used, such as Kotter's The 8-step Process for Leading Change, as suggested by David Butt. This paper assesses the extent to which this framework can assist health advocates to determine the best approach and to evaluate the effectiveness of what they are doing as advocates. We evaluate the Public Health Association of Australia's (PHAA) advocacy campaign to incorporate environmental and equity considerations into the Australian Dietary Guidelines and the Australian Guide to Healthy Eating using Kotter's framework. The PHAA's advocacy actions clearly aligned with Kotter's 8 Steps management change process. Two additional steps were also identified - the need to build long-term relationships and the importance of opportunistic actions. Management frameworks can assist health advocates to determine the key elements of effective advocacy, to plan structured advocacy campaigns and to evaluate their effectiveness. Although the policy case example is an Australian one, the principles of effective advocacy are applicable internationally

    Structural development of laminar flow control aircraft chordwise wing joint designs

    Get PDF
    For laminar flow to be achieved, any protuberances on the surface must be small enough to avoid transition to turbulent flow. However, the surface must have joints between the structural components to allow assembly or replacement of damaged parts, although large continuous surfaces can be utilized to minimize the number the number of joints. Aircraft structural joints usually have many countersunk bolts or rivets on the outer surface. To maintain no mismatch on outer surfaces, it is desirable to attach the components from the inner surface. It is also desirable for the panels to be interchangeable, without the need for shims at the joint, to avoid surface discontinuities that could cause turbulence. Fabricating components while pressing their outer surfaces against an accurate mold helps to ensure surface smoothness and continuity at joints. These items were considered in evaluating the advantages and disadvantages of the joint design concepts. After evaluating six design concepts, two of the leading candidates were fabricated and tested using many small test panels. One joint concept was also built and tested using large panels. The small and large test panel deflections for the leading candidate designs at load factors up to +1.5 g's were well within the step and waviness requirements for avoiding transition.The small panels were designed and tested for compression and tension at -65 F, at ambient conditions, and at 160 F. The small panel results for the three-rib and the sliding-joint concepts indicated that they were both acceptable. The three-rib concept, with tapered splice plates, was considered to be the most practical. A modified three-rib joint that combined the best attributes of previous candidates was designed, developed, and tested. This improved joint met all of the structural strength, surface smoothness, and waviness criteria for laminar flow control (LFC). The design eliminated all disadvantages of the initial three-rib concept except for unavoidable eccentricity, which was reduced and reacted satisfactorily by the rib supports. It should also result in a relatively simple low-cost installation, and makes it easy to replace any panels damaged in the field

    Baby-Step Giant-Step Algorithms for the Symmetric Group

    Full text link
    We study discrete logarithms in the setting of group actions. Suppose that GG is a group that acts on a set SS. When r,s∈Sr,s \in S, a solution g∈Gg \in G to rg=sr^g = s can be thought of as a kind of logarithm. In this paper, we study the case where G=SnG = S_n, and develop analogs to the Shanks baby-step / giant-step procedure for ordinary discrete logarithms. Specifically, we compute two sets A,B⊆SnA, B \subseteq S_n such that every permutation of SnS_n can be written as a product abab of elements a∈Aa \in A and b∈Bb \in B. Our deterministic procedure is optimal up to constant factors, in the sense that AA and BB can be computed in optimal asymptotic complexity, and ∣A∣|A| and ∣B∣|B| are a small constant from n!\sqrt{n!} in size. We also analyze randomized "collision" algorithms for the same problem

    Audio Features Affected by Music Expressiveness

    Full text link
    Within a Music Information Retrieval perspective, the goal of the study presented here is to investigate the impact on sound features of the musician's affective intention, namely when trying to intentionally convey emotional contents via expressiveness. A preliminary experiment has been performed involving 1010 tuba players. The recordings have been analysed by extracting a variety of features, which have been subsequently evaluated by combining both classic and machine learning statistical techniques. Results are reported and discussed.Comment: Submitted to ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2016), Pisa, Italy, July 17-21, 201

    Could parental rules play a role in the association between short sleep and obesity in young children?

    Get PDF
    Short sleep duration is associated with obesity in young children. This study develops the hypothesis that parental rules play a role in this association. Participants were 3-year-old children and their parents, recruited at nursery schools in socioeconomically deprived and non-deprived areas of a North-East England town. Parents were interviewed to assess their use of sleep, television-viewing and dietary rules, and given diaries to document their child's sleep for 4 days/5 nights. Children were measured for height, weight, waist circumference and triceps and subscapular skinfold thicknesses. One-hundred and eight families participated (84 with complete sleep data and 96 with complete body composition data). Parental rules were significantly associated together, were associated with longer night-time sleep and were more prevalent in the non-deprived-area compared with the deprived-area group. Television-viewing and dietary rules were associated with leaner body composition. Parental rules may in part confound the association between night-time sleep duration and obesity in young children, as rules cluster together across behavioural domains and are associated with both sleep duration and body composition. This hypothesis should be tested rigorously in large representative samples

    A framework for the generation of high-order curvilinear hybrid meshes for CFD simulations

    Get PDF
    We present a pipeline of state-of-the-art techniques for the generation of high-order meshes that contain highly stretched elements in viscous boundary layers, and are suitable for flow simulations at high Reynolds numbers. The pipeline uses CADfix to generate a medial object based decomposition of the domain, which wraps the wall boundaries with prismatic partitions. The use of medial object allows the prism height to be larger than is generally possible with advancing layer techniques. CADfix subsequently generates a hybrid straight-sided (or linear) mesh. A high-order mesh is then generated a posteriori using NekMesh, a high-order mesh generator within the Nektar++ framework. During the high-order mesh generation process, the CAD definition of the domain is interrogated; we describe the process for integrating the CADfix API as an alternative backend geometry engine for NekMesh, and discuss some of the implementation issues encountered. Finally, we illustrate the methodology using three geometries of increasing complexity: a wing tip, a simplified landing gear and an aircraft in cruise configuration

    Sensitivity of predicted bioaerosol exposure from open windrow composting facilities to ADMS dispersion model parameters

    Get PDF
    Bioaerosols are released in elevated quantities from composting facilities and are associated with negative health effects, although dose-response relationships are not well understood, and require improved exposure classification. Dispersion modelling has great potential to improve exposure classification, but has not yet been extensively used or validated in this context. We present a sensitivity analysis of the ADMS dispersion model specific to input parameter ranges relevant to bioaerosol emissions from open windrow composting. This analysis provides an aid for model calibration by prioritising parameter adjustment and targeting independent parameter estimation. Results showed that predicted exposure was most sensitive to the wet and dry deposition modules and the majority of parameters relating to emission source characteristics, including pollutant emission velocity, source geometry and source height. This research improves understanding of the accuracy of model input data required to provide more reliable exposure predictions

    Polymer nanoparticle identification and concentration measurement using fiber-enhanced raman spectroscopy

    Get PDF
    We present a measurement technique for chemical identification and concentration measurement of polymer nanoparticles in aqueous solution, which is achieved using Raman spectroscopy. This work delivers an improvement in measurement sensitivity of 40 times over conventional Raman measurements in cuvettes by loading polymer nanoparticles into the hollow core of a microstructured optical fiber. We apply this "fiber-enhanced" system to measure the concentration of two separate samples of polystyrene particles (diameters of 60 nm and 120 nm respectively) with concentrations in the range from 0.07 to 0.5 mg/mL. The nanoliter volume formed by the fiber presents unique experimental conditions where nanoparticles are confined within the fiber core and prevented from diffusing outside the incident electromagnetic field, thereby enhancing their interaction. Our results suggest an upper limit on the size of particle that can be measured using the hollow-core photonic crystal fiber, as the increasing angular distribution of scattered light with particle size exceeds the acceptance angle of the liquid-filled fiber. We investigate parameters such as the fiber filling rate and optical properties of the filled fiber, with the aim to deliver repeatable and quantifiable measurements. This study thereby aids the on-going process to create compact systems that can be integrated into nanoparticle production settings for in-line measurements
    • …
    corecore