86 research outputs found

    Flow and Transport in Regions with Aquatic Vegetation

    Get PDF
    This review describes mean and turbulent flow and mass transport in the presence of aquatic vegetation. Within emergent canopies, the turbulent length scales are set by the stem diameter and spacing, and the mean flow is determined by the distribution of the canopy frontal area. Near sparse submerged canopies, the bed roughness and near-bed turbulence are enhanced, but the velocity profile remains logarithmic. For dense submerged canopies, the drag discontinuity at the top of the canopy generates a shear layer, which contains canopy-scale vortices that control the exchange of mass and momentum between the canopy and the overflow. The canopy-scale vortices penetrate a finite distance into the canopy, δe, set by the canopy drag. This length scale segregates the canopy into two regions: The upper canopy experiences energetic turbulent transport, controlled by canopy-scale vortices, whereas the lower canopy experiences diminished transport, associated with the smaller stem-scale turbulence. The canopy-scale vortices induce a waving motion in flexible blades, called a monami.National Science Foundation (U.S.) (EAR 0309188)National Science Foundation (U.S.) (EAR 0125056)National Science Foundation (U.S.) (EAR0738352)National Science Foundation (U.S.) (OCE0751358

    Development of a laboratory system and 2D routing analysis to determine solute mixing within aquatic vegetation

    Get PDF
    A laser induced fluorometry (LIF) system was developed to quantify mixing within spatially variable aquatic vegetation. A comparison is made between intrusive fluorometry techniques and the application of LIF, to quantify mixing in real vegetation in the laboratory setting. LIF provides greater spatial resolution when compared to point fluorometry. Furthermore, LIF is non-intrusive. A two-dimensional routing procedure is used to calculate the longitudinal and transverse velocities and mixing coefficients from a single pulse injection of tracer within a vegetation patch

    Retention time and dispersion associated with submerged aquatic canopies

    Get PDF
    [1] The shear layer at the top of a submerged canopy generates coherent vortices that control exchange between the canopy and the overflowing water. Unlike free shear layers, the vortices in a canopy shear layer do not grow continuously downstream but reach and maintain a finite scale determined by a balance between shear production and canopy dissipation. This balance defines the length scale of vortex penetration into the canopy, δe, and the region of rapid exchange between the canopy and overflow. Deeper within the canopy, transport is constrained by smaller turbulence scales. A two-box canopy model is proposed on the basis of the length scale δe. Using diffusivity and exchange rates defined in previous studies, the model predicts the timescale required to flush the canopy through vertical exchange over a range of canopy density and height. The predicted canopy retention times, which range from minutes to an hour, are consistent with canopy retention inferred from tracer observations in the field and comparable to retention times for some hyporheic regions. The timescale for vertical exchange, along with the in-canopy velocity, determines the minimum canopy length for which vertical exchange dominates water renewal. Shorter canopies renew interior water through longitudinal advection. Finally, canopy water retention influences longitudinal dispersion through a transient storage process. When vertical exchange controls canopy retention, the transient storage dispersion increases with canopy height. When longitudinal advection controls water renewal, dispersion increases with canopy patch length

    Gravity Currents in Aquatic Canopies

    Get PDF
    A lock exchange experiment is used to investigate the propagation of gravity currents through a random array of rigid, emergent cylinders which represents a canopy of aquatic plants. As canopy drag increases, the propagating front varies from the classic profile of an unobstructed gravity current to a triangular profile. Unlike the unobstructed lock exchange, the gravity current in the canopy decelerates with time as the front lengthens. Two drag-dominated regimes associated with linear and nonlinear drag laws are identified. The theoretical expression for toe velocity is supported by observed values. Empirical criteria are developed to predict the current regime from the cylinder Reynolds number and the array density.National Science Foundation (U.S.) (grant EAR0309188)National Science Foundation (U.S.) (grant EAR0509658)Massachusetts Institute of Technology (Presidential Graduate Fellowship

    Effects of Added Vegetation on Sand Bar Stability and Stream Hydrodynamics

    Get PDF
    Vegetation was added to a fully developed sandy point bar in the meander of a constructed stream. Significant changes in the flow structure and bed topography were observed. As expected, the addition of vegetative resistance decreased the depth-averaged streamwise velocity over the bar and increased it in the open region. In addition, the secondary circulation increased in strength but became confined to the deepest section of the channel. Over the point bar, the secondary flow was entirely outward, i.e., toward the outer bank. The changes in flow led to changes in bar shape. Although the region of the bar closest to the inner bank accumulated sediment, erosion of the bar and the removal of plants by scouring were observed at the interface between the planted bar and the open channel.National Science Foundation (U.S.) (Grant No. EAR 0738352

    Retention time and dispersion associated with submerged aquatic canopies

    Get PDF
    Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Water Resources Research 43 (2007): W04422, doi:10.1029/2006WR005362.The shear layer at the top of a submerged canopy generates coherent vortices that control exchange between the canopy and the overflowing water. Unlike free shear layers, the vortices in a canopy shear layer do not grow continuously downstream but reach and maintain a finite scale determined by a balance between shear production and canopy dissipation. This balance defines the length scale of vortex penetration into the canopy, δ e , and the region of rapid exchange between the canopy and overflow. Deeper within the canopy, transport is constrained by smaller turbulence scales. A two-box canopy model is proposed on the basis of the length scale δ e . Using diffusivity and exchange rates defined in previous studies, the model predicts the timescale required to flush the canopy through vertical exchange over a range of canopy density and height. The predicted canopy retention times, which range from minutes to an hour, are consistent with canopy retention inferred from tracer observations in the field and comparable to retention times for some hyporheic regions. The timescale for vertical exchange, along with the in-canopy velocity, determines the minimum canopy length for which vertical exchange dominates water renewal. Shorter canopies renew interior water through longitudinal advection. Finally, canopy water retention influences longitudinal dispersion through a transient storage process. When vertical exchange controls canopy retention, the transient storage dispersion increases with canopy height. When longitudinal advection controls water renewal, dispersion increases with canopy patch length.This material is based upon work supported by the National Science Foundation under grant EAR0309188

    Hydraulic & Design Parameters in Full-Scale Constructed Wetland & Treatment Units: Six Case Studies

    Get PDF
    The efficiency of pond and constructed wetland (CW) treatment systems, is influenced by the internal hydrodynamics and mixing interactions between water and aquatic vegetation. In order to contribute to current knowledge of how emergent real vegetation affects solute mixing, and on what the shape and size effects are on the mixing characteristics, an understanding and quantification of those physical processes and interactions was evaluated. This paper presents results from tracer tests conducted during 2015-2016 in six full-scale systems in the UK under different flow regimes, operational depths, shapes and sizes, and in-/outlet configurations. The aim is to quantify the hydraulic performance and mixing characteristics of the treatment units, and to investigate the effect of size and shape on the mixing processes. Relative comparison of outlet configuration, inflow conditions, and internal features between the six different treatment units showed variations in residence times of up to a factor of 3. A key outcome of this study, demonstrated that the width is a more important dimension for the efficiency of the unit compared to the depth. Results underlined the importance of investigating hydrodynamics and physics of flow in full-size units to enhance treatment efficiency and predictions of water quality models

    Hydrodynamics of vegetated channels

    Get PDF
    This paper highlights some recent trends in vegetation hydrodynamics, focusing on conditions within channels and spanning spatial scales from individual blades, to canopies or vegetation patches, to the channel reach. At the blade scale, the boundary layer formed on the plant surface plays a role in controlling nutrient uptake. Flow resistance and light availability are also influenced by the reconfiguration of flexible blades. At the canopy scale, there are two flow regimes. For sparse canopies, the flow resembles a rough boundary layer. For dense canopies, the flow resembles a mixing layer. At the reach scale, flow resistance is more closely connected to the patch-scale vegetation distribution, described by the blockage factor, than to the geometry of individual plants. The impact of vegetation distribution on sediment movement is discussed, with attention being paid to methods for estimating bed stress within regions of vegetation. The key research challenges of the hydrodynamics of vegetated channels are highlighted.National Science Foundation (U.S.) (Grant No. EAR0309188)National Science Foundation (U.S.) (EAR0125056)National Science Foundation (U.S.) (EAR0738352)National Science Foundation (U.S.) (OCE0751358
    corecore