39 research outputs found

    Survival probability in diffractive Higgs production in high density QCD

    Full text link
    In this paper, the contribution of hard processes described by the BFKL pomeron exchange, is taken into account by calculating the first enhanced diagram. The survival probability is estimated, using the ratio of the first enhanced diagram and the single pomeron amplitude, taking into account all essential pomeron loop diagrams in the toy model of Mueller. The triple pomeron vertex is calculated explicitly in the momentum representation. This calculation is used for estimating the survival probability, It turns out that the survival probability is small, at 0.40.4%{}. Hard pomeron re-scattering processes contribute substantially to the survival probability.Comment: 28 pages, 7 figure

    The elastic QCD dipole amplitude at one-loop

    Full text link
    We derive the analytic expression of the two one-loop dipole contributions to the elastic 4-gluon amplitude in QCD. The first one corresponds to the double QCD pomeron exchange, the other to an order alpha^2 correction to one-pomeron exchange. Both are expressed in terms of the square of the recently derived triple QCD pomeron vertex and involve a summation over all conformal Eigenvectors of the BFKL kernel.Comment: 6 pages, REVTEX file + 2 .eps figure

    Towards an unified description of total and diffractive structure functions at HERA in the QCD dipole picture

    Get PDF
    It is argued that the QCD dipole picture allows to build an unified theoretical description -based on BFKL dynamics- of the total and diffractive nucleon structure functions. This description is in qualitative agreement with the present collection of data obtained by the H1 collaboration. More precise theoretical estimates, in particular the determination of the normalizations and proton transverse momentum behaviour of the diffractive components, are shown to be required in order to reach definite conclusions.Comment: latex file with 5 encapsulated figures, 19 page

    QCD analysis of the diffractive structure function F_2^{D(3)}

    Get PDF
    The proton diffractive structure function F2D(3)F_2^{D(3)} measured in the H1 and ZEUS experiments at HERA is analyzed in terms of both Regge phenomenology and perturbative QCD evolution. A new method determines the values of the Regge intercepts in ``hard'' diffraction, confirming a higher value of the Pomeron intercept than for soft physics. The data are well described by a QCD analysis in which point-like parton distributions, evolving according to the DGLAP equations, are assigned to the leading and sub-leading Regge exchanges. The gluon distributions are found to be quite different for H1 and ZEUS. A {\it global fit} analysis, where a higher twist component is taken from models, allows us to use data in the whole available range in diffractive mass and gives a stable answer for the leading twist contribution. We give sets of quark and gluon parton distributions for the Pomeron, and predictions for the charm and the longitudinal proton diffractive structure function from the QCD fit. An extrapolation to the Tevatron range is compared with CDF data on single diffraction. Conclusions on factorization breaking depend critically whether H1 (strong violation) or ZEUS (compatibility at low β\beta) fits are taken into account.Comment: 24 page

    Unitarization of the BFKL Pomeron on a Nucleus

    Get PDF
    We analyze the evolution equation describing all multiple hard pomeron exchanges in a hadronic or nuclear structure functions that was proposed earlier. We construct a perturbation series providing us with an exact solution to the equation outside of the saturation region. The series demonstrates how at moderately high energies the corrections to the single BFKL pomeron exchange contribution which are due to the multiple pomeron exchanges start unitarizing total deep inelastic scattering cross section. We show that as energy increases the scattering cross section of the quark-antiquark pair of a fixed transverse separation on a hadron or nucleus given by the solution of our equation inside of the saturation region unitarizes and becomes independent of energy. The corresponding F_2 structure function also unitarizes and becomes linearly proportional to ln s. We also discuss possible applications of the developed technique to diffraction.Comment: REVTeX, 20 pages, 6 figure

    Small x behavior of the slope dlnF_2/dln(1/x) in the framework of perturbative QCD

    Full text link
    Using an analytical parameterization for the behavior of the x slope of the structure function F_2 at small x in perturbative QCD, at the leading twist approximation of the Wilson operator product expansion, and applying a flat initial condition in the DGLAP evolution equations, we found very good agreement with new precise deep inelastic scattering experimental data from HERA.Comment: 13 pages, 3 figures, late

    High Energy Bounds on Soft N=4 SYM Amplitudes from AdS/CFT

    Get PDF
    Using the AdS/CFT correspondence, we study the high-energy behavior of colorless dipole elastic scattering amplitudes in N=4 SYM gauge theory through the Wilson loop correlator formalism and Euclidean to Minkowskian analytic continuation. The purely elastic behavior obtained at large impact-parameter L, through duality from disconnected AdS_5 minimal surfaces beyond the Gross-Ooguri transition point, is combined with unitarity and analyticity constraints in the central region. In this way we obtain an absolute bound on the high-energy behavior of the forward scattering amplitude due to the graviton interaction between minimal surfaces in the bulk. The dominant "Pomeron" intercept is bounded by alpha less than or equal to 11/7 using the AdS/CFT constraint of a weak gravitational field in the bulk. Assuming the elastic eikonal approximation in a larger impact-parameter range gives alpha between 4/3 and 11/7. The actual intercept becomes 4/3 if one assumes the elastic eikonal approximation within its maximally allowed range L larger than exp{Y/3}, where Y is the total rapidity. Subleading AdS/CFT contributions at large impact-parameter due to the other d=10 supergravity fields are obtained. A divergence in the real part of the tachyonic KK scalar is cured by analyticity but signals the need for a theoretical completion of the AdS/CFT scheme.Comment: 25 pages, 3 eps figure

    Structure Functions of the Nucleon and their Interpretation

    Get PDF
    The current status of measurements of the nucleon structure functions and their understanding is reviewed. The fixed target experiments E665, CCFR and NMC and the HERA experiments H1 and ZEUS are discussed in some detail. The extraction of parton momentum distribution functions from global fits is described, with particular attention paid to much improved information on the gluon momentum distribution. The status of alpha_s measurements from deep inelastic data is reviewed. Models and non-perturbative approaches for the parton input distributions are outlined. The impact on the phenomenology of QCD of the data at very low values of the Bjorken x variable is discussed in detail. Recent advances in the understanding of the transition from deep inelastic scattering to photoproduction are summarised. Some brief comments are made on the recent HERA measurements of the ep NC and CC cross-sections at very high Q2.Comment: 196 pages, 79 figures, uses ijmpa.sty and psfig.tex (included

    Non-linear QCD dynamics in two-photon interactions at high energies

    Get PDF
    Perturbative QCD predicts that the growth of the gluon density at high energies should saturate, forming a Color Glass Condensate (CGC), which is described in mean field approximation by the Balitsky-Kovchegov (BK) equation. In this paper we study the γγ\gamma \gamma interactions at high energies and estimate the main observables which will be probed at future linear colliders using the color dipole picture. We discuss in detail the dipole - dipole cross section and propose a new relation between this quantity and the dipole scattering amplitude. The total γγ\gamma \gamma, γγ\gamma^{*} \gamma^{*} cross-sections and the real photon structure function F2γ(x,Q2)F_2^{\gamma}(x,Q^2) are calculated using the recent solution of the BK equation with running coupling constant and the predictions are compared with those obtained using phenomenological models for the dipole-dipole cross section and scattering amplitude. We demonstrate that these models are able to describe the LEP data at high energies, but predict a very different behavior for the observables at higher energies. Therefore we conclude that the study of γγ\gamma \gamma interactions can be useful to constrain the QCD dynamics.Comment: 11 pages, 5 figures. Version to be published in European Physical Journal

    Photoproduction of the f2(1270) resonance

    Get PDF
    We have performed a calculation of the γp→π+π−p reaction, where the two pions have been separated in D-wave producing the f2(1270) resonance. We use elements of the local hidden gauge approach that provides the interaction of vector mesons in which the f2(1270) resonance appears as a ρ-ρ molecular state in L=0 and spin 2. The vector meson dominance, incorporated in the local hidden gauge approach converts a photon into a ρ0 meson and the other meson connects the photon with the proton. The picture is simple and has no free parameters, since the parameters of the theory have been constrained in the previous study of the vector-vector states. In a second step we introduce new elements, not present in the local hidden gauge approach, adapting the ρ propagator to Regge phenomenology and introducing the ρNN tensor coupling. We find that both the differential cross section as well as the t dependence of the cross section are in good agreement with the experimental results and provide support for the molecular picture of the f2(1270) in the first baryonic reaction where it has been tested
    corecore