34,683 research outputs found
Experimental study of ion heating and acceleration during magnetic reconnection
Ion heating and acceleration has been studied in the well-characterized reconnection layer of the Magnetic Reconnection Experiment [M. Yamada , Phys. Plasmas 4, 1936 (1997)]. Ion temperature in the layer rises substantially during null-helicity reconnection in which reconnecting field lines are anti-parallel. The plasma outflow is sub-Alfvenic due to a downstream back pressure. An ion energy balance calculation based on the data and including classical viscous heating indicates that ions are heated largely via nonclassical mechanisms. The T-i rise is much smaller during co-helicity reconnection in which field lines reconnect obliquely. This is consistent with a slower reconnection rate and a smaller resistivity enhancement over the Spitzer value. These observations show that nonclassical dissipation mechanisms can play an important role both in heating the ions and in facilitating the reconnection process
Linearized self-forces for branes
We compute the regularized force density and renormalized action due to
fields of external origin coupled to a brane of arbitrary dimension in a
spacetime of any dimension. Specifically, we consider forces generated by
gravitational, dilatonic and generalized antisymmetric form-fields. The force
density is regularized using a recently developed gradient operator. For the
case of a Nambu--Goto brane, we show that the regularization leads to a
renormalization of the tension, which is seen to be the same in both
approaches. We discuss the specific couplings which lead to cancellation of the
self-force in this case.Comment: 15 page
Spinning BTZ Black Hole versus Kerr Black Hole : A Closer Look
By applying Newman's algorithm, the AdS_3 rotating black hole solution is
``derived'' from the nonrotating black hole solution of Banados, Teitelboim,
and Zanelli (BTZ). The rotating BTZ solution derived in this fashion is given
in ``Boyer-Lindquist-type'' coordinates whereas the form of the solution
originally given by BTZ is given in a kind of an ``unfamiliar'' coordinates
which are related to each other by a transformation of time coordinate alone.
The relative physical meaning between these two time coordinates is carefully
studied. Since the Kerr-type and Boyer-Lindquist-type coordinates for rotating
BTZ solution are newly found via Newman's algorithm, next, the transformation
to Kerr-Schild-type coordinates is looked for. Indeed, such transformation is
found to exist. And in this Kerr-Schild-type coordinates, truely maximal
extension of its global structure by analytically continuing to ``antigravity
universe'' region is carried out.Comment: 17 pages, 1 figure, Revtex, Accepted for publication in Phys. Rev.
Hairy Black Holes and Null Circular Geodesics
Einstein-matter theories in which hairy black-hole configurations have been
found are studied. We prove that the nontrivial behavior of the hair must
extend beyond the null circular orbit (the photonsphere) of the corresponding
spacetime. We further conjecture that the region above the photonsphere
contains at least 50% of the total hair's mass. We support this conjecture with
analytical and numerical results.Comment: 5 page
Rigidly Rotating Strings in Stationary Spacetimes
In this paper we study the motion of a rigidly rotating Nambu-Goto test
string in a stationary axisymmetric background spacetime. As special examples
we consider the rigid rotation of strings in flat spacetime, where explicit
analytic solutions can be obtained, and in the Kerr spacetime where we find an
interesting new family of test string solutions. We present a detailed
classification of these solutions in the Kerr background.Comment: 19 pages, Latex, 9 figures, revised for publication in Classical and
Quantum Gravit
Sprayable low density ablator and application process
A sprayable, low density ablative composition is described consisting esentially of: (1) 100 parts by weight of a mixture of 25-65% by weight of phenolic microballoons, 0-20% by weight of glass microballoons, 4-10% by weight of glass fibers, 25-45% by weight of an epoxy-modified polyurethane resin, 2-4% by weight of a bentonite dispersing aid, and 1-2% by weight of an alcohol activator for the bentonite; (2) 1-10 parts by weight of an aromatic amine curing agent; and (3) 200-400 parts by weight of a solvent
Extremal Black Hole/CFT Correspondence in (Gauged) Supergravities
We extend the investigation of the recently proposed Kerr/CFT correspondence
to large classes of rotating black hole solutions in gauged and ungauged
supergravities. The correspondence, proposed originally for four-dimensional
Kerr black holes, asserts that the quantum states in the near-horizon region of
an extremal rotating black hole are holographically dual to a two-dimensional
chiral theory whose Virasoro algebra arises as an asymptotic symmetry of the
near-horizon geometry. In fact in dimension D there are [(D-1)/2] commuting
Virasoro algebras. We consider a general canonical class of near-horizon
geometries in arbitrary dimension D, and show that in any such metric, the
[(D-1)/2] central charges each imply, via the Cardy formula, a microscopic
entropy that agrees with the Bekenstein-Hawking entropy of the associated
extremal black hole. In the remainder of the paper we show for most of the
known rotating black hole solutions of gauged supergravity, and for the
ungauged supergravity solutions with four charges in D=4 and three charges in
D=5, that their extremal near-horizon geometries indeed lie within the
canonical form. This establishes that in all these examples, the microscopic
entropies of the dual CFTs agree with the Bekenstein-Hawking entropies of the
extremal rotating black holes.Comment: 32 pages, references added and minor typos fixe
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
Study of electron spin dynamics in grain aligned LaCoPO: an itinerant ferromagnet
139La NMR study was performed in grain aligned (c|| H0) sample of LaCoPO and
polycrystalline LaFePO. Knight shift is isotropic and temperature independent
in LaFePO. It is strongly temperature dependent and anisotropic in LaCoPO. The
spin-lattice relaxation rate in LaCoPO clearly reveals the existence of 3D spin
fluctuations both in the paramagnetic and ferromagnetic state over and above
the dominant 2D spin fluctuations in the paramagnetic state, observed earlier
from 31P NMR measurements in the same oriented sample. The spin fluctuation
parameters in LaCoPO determined from 139La NMR relaxation and magnetization
data, using the self consistent renormalization (SCR) theory, are in close
agreement and follow the universal Rhodes-Wohlfarth curve.Comment: Accepted in PR
Separability of Black Holes in String Theory
We analyze the origin of separability for rotating black holes in string
theory, considering both massless and massive geodesic equations as well as the
corresponding wave equations. We construct a conformal Killing-Stackel tensor
for a general class of black holes with four independent charges, then identify
two-charge configurations where enhancement to an exact Killing-Stackel tensor
is possible. We show that further enhancement to a conserved Killing-Yano
tensor is possible only for the special case of Kerr-Newman black holes. We
construct natural null congruences for all these black holes and use the
results to show that only the Kerr-Newman black holes are algebraically special
in the sense of Petrov. Modifying the asymptotic behavior by the subtraction
procedure that induces an exact SL(2)^2 also preserves only the conformal
Killing-Stackel tensor. Similarly, we find that a rotating Kaluza-Klein black
hole possesses a conformal Killing-Stackel tensor but has no further
enhancements.Comment: 27 page
- …