40 research outputs found

    Cardiopulmonary resuscitation practices in the Netherlands: results from a nationwide survey

    Get PDF
    Background: Survival rates after in-hospital cardiac arrest are low and vary across hospitals. The ERC guidelines state that more research is needed to explore factors that could influence survival. Research into the role of cardiopulmonary resuscitation (CPR) practices is scarce. The goal of this survey is to gain information about CPR practices among hospitals in the Netherlands. Methods: A survey was distributed to all Dutch hospital organizations (n = 77). Items investigated were general hospital characteristics, pre-, peri- and post-resuscitation care. Characteristics were stratified by hospital teaching status. Results: Out of 77 hospital organizations, 71 (92%) responded to the survey, representing 99 locations. Hospitals were divided into three categories: university hospitals (8%), teaching hospitals (64%) and non-teaching hospitals (28%). Of all locations, 96% used the most recent guidelines for Advanced Life Support and 91% reported the availability of a Rapid Response System. Training frequencies varied from twice a year in 41% and once a year in 53% of hospital locations. The role of CPR team leader and airway manager is most often fulfilled by (resident) anaesthetists in university hospitals (63%), by emergency department professionals in teaching hospitals (43%) and by intensive care professionals in non-teaching hospitals (72%). The role of airway manager is most often attributed to (resident) anaesthetists in university hospitals (100%), and to intensive care professionals in teaching (82%) and non-teaching hospitals (79%). Conclusion: The majority of Dutch hospitals follow the ERC guidelines but there are differences

    Epigenetic alteration at the DLK1-GTL2 imprinted domain in human neoplasia: analysis of neuroblastoma, phaeochromocytoma and Wilms' tumour

    Get PDF
    Epigenetic alterations in the 11p15.5 imprinted gene cluster are frequent in human cancers and are associated with disordered imprinting of insulin-like growth factor (IGF)2 and H19. Recently, an imprinted gene cluster at 14q32 has been defined and includes two closely linked but reciprocally imprinted genes, DLK1 and GTL2, that have similarities to IGF2 and H19, respectively. Both GTL2 and H19 are maternally expressed RNAs with no protein product and display paternal allele promoter region methylation, and DLK1 and IGF2 are both paternally expressed. To determine whether methylation alterations within the 14q32 imprinted domain occur in human tumorigenesis, we investigated the status of the GTL2 promoter differentially methylated region (DMR) in 20 neuroblastoma tumours, 20 phaeochromocytomas and, 40 Wilms' tumours. Hypermethylation of the GTL2 promoter DMR was detected in 25% of neuroblastomas, 10% of phaeochromocytoma and 2.5% of Wilms' tumours. Tumours with GTL2 promoter DMR hypermethylation also demonstrated hypermethylation at an upstream intergenic DMR thought to represent a germline imprinting control element. Analysis of neuroblastoma cell lines revealed that GTL2 DMR hypermethylation was associated with transcriptional repression of GTL2. These epigenetic findings are similar to those reported in Wilms' tumours in which H19 repression and DMR hypermethylation is associated with loss of imprinting (LOI, biallelic expression) of IGF2. However, a neuroblastoma cell line with hypermethylation of the GTL2 promoter and intergenic DMR did not show LOI of DLK1 and although treatment with a demethylating agent restored GTL2 expression and reduced DLK1 expression. As described for IGF2/H19, epigenetic changes at DLK1/GTL2 occur in human cancers. However, these changes are not associated with DLK1 LOI highlighting differences in the imprinting control mechanisms operating in the IGF2-H19 and DLK1-GTL2 domains. GTL2 promoter and intergenic DMR hypermethylation is associated with the loss of GTL2 expression and this may contribute to tumorigenesis in a subset of human cancers

    Results from recent detachment experiments in alternative divertor configurations on TCV

    Get PDF
    Divertor detachment is explored on the TCV tokamak in alternative magnetic geometries. Starting from typical TCV single-null shapes, the poloidal flux expansion at the outer strikepoint is varied by a factor of 10 to investigate the X-divertor characteristics, and the total flux expansion is varied by 70% to study the properties of the super-X divertor. The effect of an additional X-point near the target is investigated in X-point target divertors. Detachment of the outer target is studied in these plasmas during Ohmic density ramps and with the ion ∇B drift away from the primary X-point. The detachment threshold, depth of detachment, and the stability of the radiation location are investigated using target measurements from the wall-embedded Langmuir probes and two-dimensional CIII line emissivity profiles across the divertor region, obtained from inverted, toroidally-integrated camera data. It is found that increasing poloidal flux expansion results in a deeper detachment for a given line-averaged density and a reduction in the radiation location sensitivity to core density, while no large effect on the detachment threshold is observed. The total flux expansion, contrary to expectations, does not show a significant influence on any detachment characteristics in these experiments. In X-point target geometries, no evidence is found for a reduced detachment threshold despite a 2-3 fold increase in connection length. A reduced radiation location sensitivity to core plasma density in the vicinity of the target X-point is suggested by the measurements

    CADM1 is a strong neuroblastoma candidate gene that maps within a 3.72 Mb critical region of loss on 11q23

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recurrent loss of part of the long arm of chromosome 11 is a well established hallmark of a subtype of aggressive neuroblastomas. Despite intensive mapping efforts to localize the culprit 11q tumour suppressor gene, this search has been unsuccessful thus far as no sufficiently small critical region could be delineated for selection of candidate genes.</p> <p>Methods</p> <p>To refine the critical region of 11q loss, the chromosome 11 status of 100 primary neuroblastoma tumours and 29 cell lines was analyzed using a BAC array containing a chromosome 11 tiling path. For the genes mapping within our refined region of loss, meta-analysis on published neuroblastoma mRNA gene expression datasets was performed for candidate gene selection. The DNA methylation status of the resulting candidate gene was determined using re-expression experiments by treatment of neuroblastoma cells with the demethylating agent 5-aza-2'-deoxycytidine and bisulphite sequencing.</p> <p>Results</p> <p>Two small critical regions of loss within 11q23 at chromosomal band 11q23.1-q23.2 (1.79 Mb) and 11q23.2-q23.3 (3.72 Mb) were identified. In a first step towards further selection of candidate neuroblastoma tumour suppressor genes, we performed a meta-analysis on published expression profiles of 692 neuroblastoma tumours. Integration of the resulting candidate gene list with expression data of neuroblastoma progenitor cells pinpointed <it>CADM1 </it>as a compelling candidate gene. Meta-analysis indicated that <it>CADM1 </it>expression has prognostic significance and differential expression for the gene was noted in unfavourable neuroblastoma versus normal neuroblasts. Methylation analysis provided no evidence for a two-hit mechanism in 11q deleted cell lines.</p> <p>Conclusion</p> <p>Our study puts <it>CADM1 </it>forward as a strong candidate neuroblastoma suppressor gene. Further functional studies are warranted to elucidate the role of <it>CADM1 </it>in neuroblastoma development and to investigate the possibility of <it>CADM1 </it>haploinsufficiency in neuroblastoma.</p

    Antibody Avidity and Immunoglobulin G Isotype Distribution following Immunization with a Monovalent Meningococcal B Outer Membrane Vesicle Vaccine

    No full text
    The avidity maturation and immunoglobulin G (IgG) isotype distribution of antibodies after vaccination with a meningococcal B outer membrane vesicle (OMV) vaccine were evaluated as indicators of protective immunity. Pre- and postvaccination sera from 134 healthy toddlers (ages, 2 to 3 years) immunized with a monovalent meningococcal B OMV (serosubtype P1.7-2,4) vaccine adsorbed with AlPO(4) or Al(OH)(3) were analyzed by enzyme-linked immunosorbent assay (ELISA) methods. The children were vaccinated three times with intervals of 3 to 6 weeks between vaccinations or twice with an interval of 6 to 10 weeks between vaccinations. A booster was given after 20 to 40 weeks. The avidity index (AI) of antibodies increased significantly during the primary series of vaccinations and after the booster was given. No differences in AIs were found when the results obtained with the two vaccination schedules or with the two adjuvants were compared. After vaccination, IgG1 was the predominant IgG isotype, followed by IgG3. No IgG2 or IgG4 was detected. There was a strong correlation between serum bactericidal activity (SBA) and ELISA titers (r = 0.85 [P < 0.0001] for total IgG, r = 0.83 for IgG1 [P < 0.0001], r = 0.82 for IgG3 [P < 0.0001], and r = 0.84 [P < 0.0001] for the avidity titer). When two subgroups with similar anti-OMV IgG levels were compared before and after the booster vaccination, the higher AI after the booster vaccination was associated with significantly increased SBA. We concluded that avidity maturation occurs after vaccination with a monovalent meningococcal B OMV vaccine, especially after boosting, as indicated by a significant increase in the AI. Vaccination with the monovalent OMV vaccine induced mainly IgG1 and IgG3 isotypes, which are considered to be most important for protection against meningococcal disease. An increase in the AI of antibodies is associated with increased SBA, independent of the level of specific IgG and the IgG isotype distribution. Measuring the AI and IgG isotype distribution of antibodies after vaccination can be a supplementary method for predicting protective immunity for evaluation in future phase III trials with meningococcal serogroup B vaccines

    Biological effects of TrkA and TrkB receptor signaling in neuroblastoma

    No full text
    The Trk family consists of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-NGF, BDNF, NT3 and NT4. Neurotrophins mediate their multiple effects through a number of distinct intracellular signaling cascades regulating such diverse biological responses as cell survival, proliferation and differentiation in normal and neoplastic neuronal cells. Expression of Trk receptors also plays an important role in the biology and clinical behavior of neuroblastomas. High expression of TrkA is present in neuroblastomas with favorable biological features and highly correlated with patient survival, whereas TrkB is mainly expressed on unfavorable, aggressive neuroblastomas. This short review discusses recent data on the biological roles of TrkA and TrkB signaling in neuroblastoma. (C) 2005 Elsevier Ireland Ltd. All rights reserve

    Cross-feeding between Bifidobacterium infantis and Anaerostipes caccae on lactose and human milk oligosaccharides

    Get PDF
    The establishment of the gut microbiota immediately after birth is a dynamic process that may impact lifelong health. At this important developmental stage in early life, human milk oligosaccharides (HMOs) serve as specific substrates to shape the gut microbiota of the nursling. The well-orchestrated transition is important as an aberrant microbial composition and bacterial-derived metabolites are associated with colicky symptoms and atopic diseases in infants. Here, we study the trophic interactions between an HMO-degrader, Bifidobacterium infantis and the butyrogenic Anaerostipes caccae using carbohydrate substrates that are relevant in the early life period including lactose and total human milk carbohydrates. Mono- and co-cultures of these bacterial species were grown at pH 6.5 in anaerobic bioreactors supplemented with lactose or total human milk carbohydrates. A. caccae was not able to grow on these substrates except when grown in co-culture with B. infantis, leading to growth and concomitant butyrate production. Two levels of cross-feeding were observed, in which A. caccae utilised the liberated monosaccharides as well as lactate and acetate produced by B. infantis. This microbial cross-feeding points towards the key ecological role of bifidobacteria in providing substrates for other important species that will colonise the infant gut. The progressive shift of the gut microbiota composition that contributes to the gradual production of butyrate could be important for host-microbial crosstalk and gut maturation

    Cross-Reactivity of Antibodies against PorA after Vaccination with a Meningococcal B Outer Membrane Vesicle Vaccine

    No full text
    The cross-reactivity of PorA-specific antibodies induced by a monovalent P1.7-2,4 (MonoMen) and/or a hexavalent (HexaMen) meningococcal B outer membrane vesicle vaccine (OMV) in toddlers and school children was studied by serum bactericidal assays (SBA). First, isogenic vaccine strains and PorA-identical patient isolates were compared as a target in SBA, to ensure that the vaccine strains are representative for patient isolates. Geometric mean titers (GMTs) in SBA against patient isolates with subtypes P1.5-2,10 and P1.5-1,2-2 after vaccination with HexaMen were generally lower than those against vaccine strains with the same subtype, although the percentage of vaccine responders (≄4-fold increase in SBA after vaccination) was not affected. Using various P1.7-2,4 patient isolates, GMTs as well as the number of vaccine responders were higher than for the P1.7-2,4 vaccine strain, indicating that the use of the P1.7-2,4 vaccine strain may have underestimated the immunogenicity of this subtype in HexaMen. Secondly, the cross-reactivity of antibodies induced by MonoMen and HexaMen was studied using several patient isolates that differed from the vaccine subtypes by having minor antigenic variants of one variable region (VR), by having a completely different VR or by having a different combination of VRs. MonoMen induced P1.4-specific antibodies that were cross-reactive with P1.4 variants P1.4-1 and P1.4-3. HexaMen induced a broader cross-reactive antibody response against various patient isolates with one VR identical to a vaccine subtype or a combination of VRs included in HexaMen. Cross-reactivity, measured by a fourfold increase in SBA after vaccination, against these strains ranged from 23 to 92% depending on the subtype of the tested strain and was directed against both VR1 and VR2. The extended cross-reactivity of vaccinee sera induced by HexaMen against antigenic variants has important favorable implications for meningococcal B OMV vaccine coverage
    corecore