540 research outputs found

    Computational Complexity of Determining the Barriers to Interface Motion in Random Systems

    Get PDF
    The low-temperature driven or thermally activated motion of several condensed matter systems is often modeled by the dynamics of interfaces (co-dimension-1 elastic manifolds) subject to a random potential. Two characteristic quantitative features of the energy landscape of such a many-degree-of-freedom system are the ground-state energy and the magnitude of the energy barriers between given configurations. While the numerical determination of the former can be accomplished in time polynomial in the system size, it is shown here that the problem of determining the latter quantity is NP-complete. Exact computation of barriers is therefore (almost certainly) much more difficult than determining the exact ground states of interfaces.Comment: 8 pages, figures included, to appear in Phys. Rev.

    Basic kinetic wealth-exchange models: common features and open problems

    Get PDF
    We review the basic kinetic wealth-exchange models of Angle [J. Angle, Social Forces 65 (1986) 293; J. Math. Sociol. 26 (2002) 217], Bennati [E. Bennati, Rivista Internazionale di Scienze Economiche e Commerciali 35 (1988) 735], Chakraborti and Chakrabarti [A. Chakraborti, B. K. Chakrabarti, Eur. Phys. J. B 17 (2000) 167], and of Dragulescu and Yakovenko [A. Dragulescu, V. M. Yakovenko, Eur. Phys. J. B 17 (2000) 723]. Analytical fitting forms for the equilibrium wealth distributions are proposed. The influence of heterogeneity is investigated, the appearance of the fat tail in the wealth distribution and the relaxation to equilibrium are discussed. A unified reformulation of the models considered is suggested.Comment: Updated version; 9 pages, 5 figures, 2 table

    Scalar Bilepton Dark Matter

    Full text link
    In this work we show that 3-3-1 model with right-handed neutrinos has a natural weakly interacting massive particle (WIMP) dark mater candidate. It is a complex scalar with mass of order of some hundreds of GeV which carries two units of lepton number, a scalar bilepton. This makes it a very peculiar WIMP, very distinct from Supersymmetric or Extra-dimension candidates. Besides, although we have to make some reasonable assumptions concerning the several parameters in the model, no fine tunning is required in order to get the correct dark matter abundance. We also analyze the prospects for WIMP direct detection by considering recent and projected sensitivities for WIMP-nucleon elastic cross section from CDMS and XENON Collaborations.Comment: 21 pages, 8 figures, uses iopart.cls, same text as published version with a small different arrangement of figure

    Hierarchies of Susy Splittings and Invisible Photinos as Dark Matter

    Full text link
    We explore how to generate hierarchies in the splittings between superpartners. Some of the consequences are the existence of invisible components of dark matter, new inflaton candidates, invisible monopoles and a number of invisible particles that might dominate during various eras, in particular between BBN and recombination and decay subsequently.Comment: 16 pages. v3: Ref. 27 has been modified. v4: Published versio

    Antimatter and Gamma-rays from Dark Matter Annihilation

    Full text link
    A brief review of the indirect detection signatures of dark matter is given. In particular, detection methods of dark matter particle annihilation to antimatter and gamma-rays are reviewed. With the GLAST satellite soon to be launched, a crucial window in the energy range of a few GeV up to 300 GeV will open. The good angular and energy resolution of the instrument means that structures predicted by cold dark matter models can be searched for. Large, currently planned ground-based imaging Cherenkov telescope arrays, may further improve the limits, or discover a signal, if the current understanding of halo dark matter structure is correct.Comment: 7p, one fig., invited talk at TAUP 2007, Sendai, Japan, to appear in the Proceeding

    Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking

    Get PDF
    We propose the hybrid gravity-gauge mediated supersymmetry breaking where the gravitino mass is about several GeV. The strong constraints on supersymmetry viable parameter space from the CMS and ATLAS experiments at the LHC can be relaxed due to the heavy colored supersymmetric particles, and it is consistent with null results in the dark matter (DM) direct search experiments such as XENON100. In particular, the possible maximal flavor and CP violations from the relatively small gravity mediation may naturally account for the recent LHCb anomaly. In addition, because the gravitino mass is around the asymmetric DM mass, we propose the asymmetric origin of the gravitino relic density and solve the cosmological coincident problem on the DM and baryon densities \Omega_{\rm DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric metastable particle (AMP) late decay. However, we show that there is no AMP candidate in the minimal supersymmetric Standard Model (SM) due to the robust gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized in the well motivated supersymmetric SMs with vector-like particles or continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio

    Effective Dark Matter Model: Relic density, CDMS II, Fermi LAT and LHC

    Full text link
    The Cryogenic Dark Matter Search recently announced the observation of two signal events with a 77% confidence level. Although statistically inconclusive, it is nevertheless suggestive. In this work we present a model-independent analysis on the implication of a positive signal in dark matter scattering off nuclei. Assuming the interaction between (scalar, fermion or vector) dark matter and the standard model induced by unknown new physics at the scale Λ\Lambda, we examine various dimension-6 tree-level induced operators and constrain them using the current experimental data, e.g. the WMAP data of the relic abundance, CDMS II direct detection of the spin-independent scattering, and indirect detection data (Fermi LAT cosmic gamma-ray), etc. Finally, the LHC reach is also explored
    • 

    corecore