606 research outputs found
Computational Complexity of Determining the Barriers to Interface Motion in Random Systems
The low-temperature driven or thermally activated motion of several condensed
matter systems is often modeled by the dynamics of interfaces (co-dimension-1
elastic manifolds) subject to a random potential. Two characteristic
quantitative features of the energy landscape of such a many-degree-of-freedom
system are the ground-state energy and the magnitude of the energy barriers
between given configurations. While the numerical determination of the former
can be accomplished in time polynomial in the system size, it is shown here
that the problem of determining the latter quantity is NP-complete. Exact
computation of barriers is therefore (almost certainly) much more difficult
than determining the exact ground states of interfaces.Comment: 8 pages, figures included, to appear in Phys. Rev.
Basic kinetic wealth-exchange models: common features and open problems
We review the basic kinetic wealth-exchange models of Angle [J. Angle, Social
Forces 65 (1986) 293; J. Math. Sociol. 26 (2002) 217], Bennati [E. Bennati,
Rivista Internazionale di Scienze Economiche e Commerciali 35 (1988) 735],
Chakraborti and Chakrabarti [A. Chakraborti, B. K. Chakrabarti, Eur. Phys. J. B
17 (2000) 167], and of Dragulescu and Yakovenko [A. Dragulescu, V. M.
Yakovenko, Eur. Phys. J. B 17 (2000) 723]. Analytical fitting forms for the
equilibrium wealth distributions are proposed. The influence of heterogeneity
is investigated, the appearance of the fat tail in the wealth distribution and
the relaxation to equilibrium are discussed. A unified reformulation of the
models considered is suggested.Comment: Updated version; 9 pages, 5 figures, 2 table
Hierarchies of Susy Splittings and Invisible Photinos as Dark Matter
We explore how to generate hierarchies in the splittings between
superpartners. Some of the consequences are the existence of invisible
components of dark matter, new inflaton candidates, invisible monopoles and a
number of invisible particles that might dominate during various eras, in
particular between BBN and recombination and decay subsequently.Comment: 16 pages. v3: Ref. 27 has been modified. v4: Published versio
Organisational participation and women - an attitude problem?
Employee participation is a dynamic and contested area of organisational behaviour, attracting continuing academic, practitioner and policy interest and debate. This chapter focuses on organisational participation and women
Asymmetric Origin for Gravitino Relic Density in the Hybrid Gravity-Gauge Mediated Supersymmetry Breaking
We propose the hybrid gravity-gauge mediated supersymmetry breaking where the
gravitino mass is about several GeV. The strong constraints on supersymmetry
viable parameter space from the CMS and ATLAS experiments at the LHC can be
relaxed due to the heavy colored supersymmetric particles, and it is consistent
with null results in the dark matter (DM) direct search experiments such as
XENON100. In particular, the possible maximal flavor and CP violations from the
relatively small gravity mediation may naturally account for the recent LHCb
anomaly. In addition, because the gravitino mass is around the asymmetric DM
mass, we propose the asymmetric origin of the gravitino relic density and solve
the cosmological coincident problem on the DM and baryon densities \Omega_{\rm
DM}:\Omega_{B}\approx 5:1. The gravitino relic density arises from asymmetric
metastable particle (AMP) late decay. However, we show that there is no AMP
candidate in the minimal supersymmetric Standard Model (SM) due to the robust
gaugino/Higgsino mediated wash-out effects. Interestingly, AMP can be realized
in the well motivated supersymmetric SMs with vector-like particles or
continuous U(1)_R symmetry. Especially, the lightest CP-even Higgs boson mass
can be lifted in the supersymmetric SMs with vector-like particles.Comment: RevTex4, 21 pages, 1 figure, minor corrections, JHEP versio
WIMP-nucleus scattering in chiral effective theory
We discuss long-distance QCD corrections to the WIMP-nucleon(s) interactions
in the framework of chiral effective theory. For scalar-mediated WIMP-quark
interactions, we calculate all the next-to-leading-order corrections to the
WIMP-nucleus elastic cross-section, including two-nucleon amplitudes and
recoil-energy dependent shifts to the single-nucleon scalar form factors. As a
consequence, the scalar-mediated WIMP-nucleus cross-section cannot be
parameterized in terms of just two quantities, namely the neutron and proton
scalar form factors at zero momentum transfer, but additional parameters
appear, depending on the short-distance WIMP-quark interaction. Moreover,
multiplicative factorization of the cross-section into particle, nuclear and
astro-particle parts is violated. In practice, while the new effects are of the
natural size expected by chiral power counting, they become very important in
those regions of parameter space where the leading order WIMP-nucleus amplitude
is suppressed, including the so-called "isospin-violating dark matter" regime.
In these regions of parameter space we find order-of-magnitude corrections to
the total scattering rates and qualitative changes to the shape of recoil
spectra.Comment: 23 pages, 6 figures, 1 tabl
Neutrino Mass, Sneutrino Dark Matter and Signals of Lepton Flavor Violation in the MRSSM
We study the phenomenology of mixed-sneutrino dark matter in the Minimal
R-Symmetric Supersymmetric Standard Model (MRSSM). Mixed sneutrinos fit
naturally within the MRSSM, as the smallness (or absence) of neutrino Yukawa
couplings singles out sneutrino A-terms as the only ones not automatically
forbidden by R-symmetry. We perform a study of randomly generated sneutrino
mass matrices and find that (i) the measured value of is well
within the range of typical values obtained for the relic abundance of the
lightest sneutrino, (ii) with small lepton-number-violating mass terms
for the right-handed sneutrinos, random
matrices satisfying the constraint have a decent probability of
satisfying direct detection constraints, and much of the remaining parameter
space will be probed by upcoming experiments, (iii) the terms radiatively generate appropriately small Majorana neutrino
masses, with neutrino oscillation data favoring a mostly sterile lightest
sneutrino with a dominantly mu/tau-flavored active component, and (iv) a
sneutrino LSP with a significant mu component can lead to striking signals of
e-mu flavor violation in dilepton invariant-mass distributions at the LHC.Comment: Revised collider analysis in Sec. 5 after fixing error in particle
spectrum, References adde
Scalar Bilepton Dark Matter
In this work we show that 3-3-1 model with right-handed neutrinos has a
natural weakly interacting massive particle (WIMP) dark mater candidate. It is
a complex scalar with mass of order of some hundreds of GeV which carries two
units of lepton number, a scalar bilepton. This makes it a very peculiar WIMP,
very distinct from Supersymmetric or Extra-dimension candidates. Besides,
although we have to make some reasonable assumptions concerning the several
parameters in the model, no fine tunning is required in order to get the
correct dark matter abundance. We also analyze the prospects for WIMP direct
detection by considering recent and projected sensitivities for WIMP-nucleon
elastic cross section from CDMS and XENON Collaborations.Comment: 21 pages, 8 figures, uses iopart.cls, same text as published version
with a small different arrangement of figure
Material screening and selection for XENON100
Results of the extensive radioactivity screening campaign to identify
materials for the construction of XENON100 are reported. This Dark Matter
search experiment is operated underground at Laboratori Nazionali del Gran
Sasso (LNGS), Italy. Several ultra sensitive High Purity Germanium detectors
(HPGe) have been used for gamma ray spectrometry. Mass spectrometry has been
applied for a few low mass plastic samples. Detailed tables with the
radioactive contaminations of all screened samples are presented, together with
the implications for XENON100.Comment: 8 pages, 1 figur
Dark Matter Spin-Dependent Limits for WIMP Interactions on 19-F by PICASSO
The PICASSO experiment at SNOLAB reports new results for spin-dependent WIMP
interactions on F using the superheated droplet technique. A new
generation of detectors and new features which enable background discrimination
via the rejection of non-particle induced events are described. First results
are presented for a subset of two detectors with target masses of F of
65 g and 69 g respectively and a total exposure of 13.75 0.48 kgd. No
dark matter signal was found and for WIMP masses around 24 GeV/c new limits
have been obtained on the spin-dependent cross section on F of
= 13.9 pb (90% C.L.) which can be converted into cross section
limits on protons and neutrons of = 0.16 pb and = 2.60 pb
respectively (90% C.L). The obtained limits on protons restrict recent
interpretations of the DAMA/LIBRA annual modulations in terms of spin-dependent
interactions.Comment: Revised version, accepted for publication in Phys. Lett. B, 20 pages,
7 figure
- …
