41 research outputs found

    Identification of genomic regions associated with differences in fleece type in Huacaya and Suri alpacas (Vicugna pacos).

    Get PDF
    The difference in fleece type is the distinguishing trait between the two types of alpacas (Vicugna pacos), Huacaya and Suri. The Suri fleece type has been found to be inherited dominantly over the Huacaya type, resulting in offspring with the Suri phenotype. The aim of our study was to map genomic regions associated with the two different fleece types. In this study, 91 alpacas (54 Huacayas and 37 Suris) from Germany and Switzerland were genotyped using the 76k alpaca SNP array. Only 59k chromosome-localised markers map to the alpaca reference assembly VicPac3.1, and after quality control 49 866 SNPs, were retained for population structure assessment and to conduct a genome-wide association study. Both principal component and neighbour-joining tree analysis showed that the two fleece-type cohorts overlapped rather than forming two distinct clusters. Genome-wide significantly associated markers were observed in the scaffold region of chromosome 16 (NW_021964192.1), which contains a cluster of keratin genes. A haplotype predominantly found in Suri alpacas has been identified which supports dominant inheritance. Variant filtering of nine whole-genome sequenced alpacas from both fleece types in the critical interval of 0.4 Mb did not reveal perfect segregation of either fleece type for specific variants. To our knowledge, this is the first study to use the recently developed species-specific SNP array to identify genomic regions associated with differences in fleece type in alpacas. There are still some limitations, such as the preliminary status of the reference assembly and the incomplete annotation of the alpaca genome

    Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018

    Get PDF
    Wild birds play an important role as reservoir hosts and vectors for zoonotic arboviruses and foster their spread. Usutu virus (USUV) has been circulating endemically in Germany since 2011, while West Nile virus (WNV) was first diagnosed in several bird species and horses in 2018. In 2017 and 2018, we screened 1709 live wild and zoo birds with real-time polymerase chain reaction and serological assays. Moreover, organ samples from bird carcasses submitted in 2017 were investigated. Overall, 57 blood samples of the live birds (2017 and 2018), and 100 organ samples of dead birds (2017) were positive for USUV-RNA, while no WNV-RNA-positive sample was found. Phylogenetic analysis revealed the first detection of USUV lineage Europe 2 in Germany and the spread of USUV lineages Europe 3 and Africa 3 towards Northern Germany. USUV antibody prevalence rates were high in Eastern Germany in both years. On the contrary, in Northern Germany, high seroprevalence rates were first detected in 2018, with the first emergence of USUV in this region. Interestingly, high WNV-specific neutralizing antibody titers were observed in resident and short-distance migratory birds in Eastern Germany in 2018, indicating the first signs of a local WNV circulation

    Citizen science versus professional data collection: Comparison of approaches to mosquito monitoring in Germany

    Get PDF
    Due to the recent emergence of invasive mosquito species and the outbreaks of mosquito-borne diseases in Europe, research on the ecology and diversity of the mosquito fauna has returned to scientific agendas. Through a nationwide surveillance programme in Germany, mosquitoes have been monitored actively by systematically operated traps since 2011, and passively by the 'Mückenatlas' (mosquito atlas) citizen science project launched in 2012. To assess the performance of both monitoring methods we compared the two respective datasets with regard to habitat coverage, species composition and the ability to detect invasive mosquitoes. The datasets include observations from the beginning of the project until the end of 2017. We found significant differences in species composition caused by land use types and the participants' recording activity. Active monitoring performed better in mapping mosquito diversity, whereas passive monitoring better detected invasive species, thereby using data from private premises scientists usually cannot access. Synthesis and applications. Active and passive monitoring is complementary. Combining them allows for the determination of mosquito diversity, efficient detection of emerging invasive species and the initiation of rapid-response actions against such invaders. The 'Mückenatlas' sets an example for the usefulness of citizen science when included in a national monitoring programme, an approach that may be worth copying for tackling the global spread of arthropod vectors of disease agents

    Monthly variation in the probability of presence of adult Culicoides populations in nine European countries and the implications for targeted surveillance

    Get PDF
    Background: Biting midges of the genus Culicoides (Diptera: Ceratopogonidae) are small hematophagous insects responsible for the transmission of bluetongue virus, Schmallenberg virus and African horse sickness virus to wild and domestic ruminants and equids. Outbreaks of these viruses have caused economic damage within the European Union. The spatio-temporal distribution of biting midges is a key factor in identifying areas with the potential for disease spread. The aim of this study was to identify and map areas of neglectable adult activity for each month in an average year. Average monthly risk maps can be used as a tool when allocating resources for surveillance and control programs within Europe. Methods : We modelled the occurrence of C. imicola and the Obsoletus and Pulicaris ensembles using existing entomological surveillance data from Spain, France, Germany, Switzerland, Austria, Denmark, Sweden, Norway and Poland. The monthly probability of each vector species and ensembles being present in Europe based on climatic and environmental input variables was estimated with the machine learning technique Random Forest. Subsequently, the monthly probability was classified into three classes: Absence, Presence and Uncertain status. These three classes are useful for mapping areas of no risk, areas of high-risk targeted for animal movement restrictions, and areas with an uncertain status that need active entomological surveillance to determine whether or not vectors are present. Results: The distribution of Culicoides species ensembles were in agreement with their previously reported distribution in Europe. The Random Forest models were very accurate in predicting the probability of presence for C. imicola (mean AUC = 0.95), less accurate for the Obsoletus ensemble (mean AUC = 0.84), while the lowest accuracy was found for the Pulicaris ensemble (mean AUC = 0.71). The most important environmental variables in the models were related to temperature and precipitation for all three groups. Conclusions: The duration periods with low or null adult activity can be derived from the associated monthly distribution maps, and it was also possible to identify and map areas with uncertain predictions. In the absence of ongoing vector surveillance, these maps can be used by veterinary authorities to classify areas as likely vector-free or as likely risk areas from southern Spain to northern Sweden with acceptable precision. The maps can also focus costly entomological surveillance to seasons and areas where the predictions and vector-free status remain uncertain

    Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?

    Get PDF
    In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately

    Evaluating the risk for Usutu virus circulation in Europe : comparison of environmental niche models and epidemiological models

    Get PDF
    Abstract Background Usutu virus (USUV) is a mosquito-borne flavivirus, reported in many countries of Africa and Europe, with an increasing spatial distribution and host range. Recent outbreaks leading to regional declines of European common blackbird (Turdus merula) populations and a rising number of human cases emphasize the need for increased awareness and spatial risk assessment. Methods Modelling approaches in ecology and epidemiology differ substantially in their algorithms, potentially resulting in diverging model outputs. Therefore, we implemented a parallel approach incorporating two commonly applied modelling techniques: (1) Maxent, a correlation-based environmental niche model and (2) a mechanistic epidemiological susceptible-exposed-infected-removed (SEIR) model. Across Europe, surveillance data of USUV-positive birds from 2003 to 2016 was acquired to train the environmental niche model and to serve as test cases for the SEIR model. The SEIR model is mainly driven by daily mean temperature and calculates the basic reproduction number R0. The environmental niche model was run with long-term bio-climatic variables derived from the same source in order to estimate climatic suitability. Results Large areas across Europe are currently suitable for USUV transmission. Both models show patterns of high risk for USUV in parts of France, in the Pannonian Basin as well as northern Italy. The environmental niche model depicts the current situation better, but with USUV still being in an invasive stage there is a chance for under-estimation of risk. Areas where transmission occurred are mostly predicted correctly by the SEIR model, but it mostly fails to resolve the temporal dynamics of USUV events. High R0 values predicted by the SEIR model in areas without evidence for real-life transmission suggest that it may tend towards over-estimation of risk. Conclusions The results from our parallel-model approach highlight that relying on a single model for assessing vector-borne disease risk may lead to incomplete conclusions. Utilizing different modelling approaches is thus crucial for risk-assessment of under-studied emerging pathogens like USUV
    corecore