215 research outputs found

    Analyzing Fragmentation of Simple Fluids with Percolation Theory

    Full text link
    We show that the size distributions of fragments created by high energy nuclear collisions are remarkably well reproduced within the framework of a parameter free percolation model. We discuss two possible scenarios to explain this agreement and suggest that percolation could be an universal mechanism to explain the fragmentation of simple fluids.Comment: 12 pages, 11 figure

    Partial energies fluctuations and negative heat capacities

    Get PDF
    We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.Comment: Modified figures 3 and

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Further Development of the Improved QMD Model and its Applications to Fusion Reaction near Barrier

    Full text link
    The Improved Quantum Molecular Dynamics model is further developed by introducing new parameters in interaction potential energy functional based on Skyrme interaction of SkM^{*} and SLy series. The properties of ground states of selected nuclei can be reproduced very well. The Coulomb barriers for a series of reaction systems are studied and compared with the results of the proximity potential. The fusion excitation functions for a series of fusion reactions are calculated and the results are in good agreement with experimental data.Comment: 17 pages, 10 figures, PRC accepte

    A "Little Big Bang" Scenario of Multifragmentation

    Get PDF
    We suggest a multifragmentation scenario in which fragments are produced at an early, high temperature and high density, stage of the reaction. In this scenario, self-bound clusters of particles in the hot and dense fluid are the precursors of the observed fragments. This solves a number of recurrent problems concerning the kinetic energies and the temperature of the fragments, encountered with the standard low density fragmentation picture. The possibility to recover the initial thermodynamic parameters from the inspection of the asymptotic fragment size and kinetic energy distributions is discussed.Comment: 15 pages, 12 figure

    Zipf's law in Multifragmentation

    Full text link
    We discuss the meaning of Zipf's law in nuclear multifragmentation. We remark that Zipf's law is a consequence of a power law fragment size distribution with exponent τ2\tau \simeq 2. We also recall why the presence of such distribution is not a reliable signal of a liquid-gas phase transition

    Percolation line of stable clusters in supercritical fluids

    Full text link
    We predict that self-bound clusters of particles exist in the supercritical phase of simple fluids. These clusters, whose internal temperature is lower than the global temperature of the system, define a percolation line that starts at the critical point. This line should be physically observable. Possible experiments showing the validity of these predictions are discussed.Comment: 5 pages, 3 figures, corrected some typo

    Polarizing Double Negation Translations

    Get PDF
    Double-negation translations are used to encode and decode classical proofs in intuitionistic logic. We show that, in the cut-free fragment, we can simplify the translations and introduce fewer negations. To achieve this, we consider the polarization of the formul{\ae}{} and adapt those translation to the different connectives and quantifiers. We show that the embedding results still hold, using a customized version of the focused classical sequent calculus. We also prove the latter equivalent to more usual versions of the sequent calculus. This polarization process allows lighter embeddings, and sheds some light on the relationship between intuitionistic and classical connectives

    ASMs and Operational Algorithmic Completeness of Lambda Calculus

    Get PDF
    We show that lambda calculus is a computation model which can step by step simulate any sequential deterministic algorithm for any computable function over integers or words or any datatype. More formally, given an algorithm above a family of computable functions (taken as primitive tools, i.e., kind of oracle functions for the algorithm), for every constant K big enough, each computation step of the algorithm can be simulated by exactly K successive reductions in a natural extension of lambda calculus with constants for functions in the above considered family. The proof is based on a fixed point technique in lambda calculus and on Gurevich sequential Thesis which allows to identify sequential deterministic algorithms with Abstract State Machines. This extends to algorithms for partial computable functions in such a way that finite computations ending with exceptions are associated to finite reductions leading to terms with a particular very simple feature.Comment: 37 page

    Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector spin-orbit terms

    Full text link
    We extend a recent calculation of the nuclear energy density functional in the systematic framework of chiral perturbation theory by computing the isovector spin-orbit terms: (ρpρn)(JpJn)Gso(kf)+(JpJn)2GJ(kf)(\vec \nabla \rho_p- \vec \nabla \rho_n)\cdot(\vec J_p-\vec J_n) G_{so}(k_f)+ (\vec J_p-\vec J_n)^2 G_J(k_f). The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a good equation of state of isospin-symmetric nuclear matter. We find that the parameterfree results for the (density-dependent) strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) agree fairly well with that of phenomenological Skyrme forces for densities ρ>ρ0/10\rho > \rho_0/10. At very low densities a strong variation of the strength functions Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) with density sets in. This has to do with chiral singularities mπ1m_\pi^{-1} and the presence of two competing small mass scales kfk_f and mπm_\pi. The novel density dependencies of Gso(kf)G_{so}(k_f) and GJ(kf)G_J(k_f) as predicted by our parameterfree (leading order) calculation should be examined in nuclear structure calculations.Comment: 9 pages, 3 figure, published in: Physical Review C68, 014323 (2003
    corecore