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Abstract

We suggest a multifragmentation scenario in which fragments are pro-
duced at an early, high temperature and high density, stage of the reaction.
In this scenario, self-bound clusters of particles in the hot and dense fluid
are the precursors of the observed fragments. This solves a number of re-
current problems concerning the kinetic energies and the temperature of
the fragments, encountered with the standard low density fragmentation
picture. The possibility to recover the initial thermodynamic parameters
(T and ρ) from the inspection of the asymptotic fragment size and kinetic
energy distributions is discussed.

1 Introduction

Recent theoretical studies of the morphology of simple fluids have suggested the
presence of self-bound clusters of particles [1, 2, 3]. The (time averaged) mass
distributions of these clusters depend essentially on the energy and density of
the system and resemble those found in nuclear multifragmentation (U -shapes,
power law, exponentials). Furthermore, these distributions (event averaged)
remain invariant if the system is allowed to expand freely.

∗UMR 8626, CNRS Université de Paris XI
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The above observations suggest the following scenario for multifragmenta-
tion: In a first step, the nucleus is excited (and possibly compressed). In this
”hot” and dense phase, at least part of it reaches thermal equilibrium. Clusters,
defined as self-bound ensembles of particles, are present in this medium. Imme-
diately after, the system starts to expand, out of equilibrium, as an ensemble
of interacting clusters. Asymptotically, these clusters cease to interact with
each other, becoming the observed fragments. The sudden expansion reveals
the cluster distribution of the primordial hot and dense phase of the system (a
Little Big Bang) and “freezes” it. The long range Coulomb repulsion between
clusters helps this freezing process. The smallness of the system also helps,
because most of the clusters are close to the surface and escape freely into the
vacuum. The clusters have ramified shapes in the dense medium and become,
at asymptotic times, spherical fragments.

The ”standard” mechanism [4, 5, 6, 7] of multifragmentation, adopted in the
so-called ”Statistical Equilibrium Models” (SEM), is different: Once the system
is excited, it undergoes an homogeneous and quasi-static expansion. At some
sufficiently low density (freeze-out), it ”recondensates” as an ensemble of spher-
ical non-overlapping and non-interacting fragments. At this stage, the models
calculate the fragment mass distributions as those of a gas of non-interacting
fragments with internal nuclear structure, at equilibrium. These models have
been extremely successful in describing the observed fragment mass distributions
[7, 8]. It is however important to notice that the main hypothesis (equilibrium
at low freeze-out density, spherical fragments) required in these models to make
the calculations feasible, are not substantiated by other, more microscopic, ap-
proaches of the multifragmentation phenomenon [9, 10, 11, 12, 13]. In fact,
despite the success in describing the mass distributions, this ”standard” sce-
nario leads to some recurrent problems. Among them, the most important is
the prediction of the kinetic energies of the fragments that are too low compared
with experimental observations [14, 15]. This problem is ”corrected” by adding
an ad hoc radial flow to the fragments. However the origin of this flow is unclear
and seems inconsistent with the hypothesis of equilibrium and the low freeze-out
density. Another problem concerns the internal temperature of the fragments,
which in the experiments seems to be much lower than the temperature of the
gas of fragments [16, 17]. We will see that the proposed high density scenario
with pre-existing clusters helps to solve these problems in a very natural way.

This approach is substantiated by Classical Molecular Dynamics (CMD)
calculations [1, 2, 9, 10, 11] of an ensemble of particles either confined in a
container or freely expanding. Our goal is to interpret the (well known) results
obtained with these methods at the light of our present knowledge on clusters in
hot and dense fluids. We are thus not proposing a well-finished model of nuclear
multifragmentation which could be directly compared with experimental data,
but rather a generic scenario.

This paper is organized as follows. In section 2, we present results on
the mapping between thermodynamics and clustering in dense and confined
medium, in large and in nuclear-size systems. In section 3 we discuss the free
expansion of these latter systems. Some final remarks will be found in Section
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4.

2 Clusters in Confined Systems

In order to investigate the mapping between thermodynamics and clustering, we
first have to define what a physical cluster is, over the whole range of densities
and temperatures. A definition solely based on a proximity criterium (interac-
tion radius) in configuration space is obviously not adequate at high densities
and/or temperatures.

At low density, a cluster is naturally defined as a self bound ensemble of par-
ticles. By continuity we shall extend this definition to a dense medium. Several
approaches can be used to identify self-bound clusters among the particles of
the system. For instance, they can be defined as a partition of particles which
minimizes the interaction energy between clusters [18, 19]. Clusters can also
be built, bond by bond, using Hill’s criterium [20]: Two particles are bound if
their relative kinetic energy is less than their potential energy. In other words,
a cluster is a set of particles close to each other in phase space and not only
in configuration space. It must be emphasized that, with this model, knowing
the positions and velocities of the particles, no adjusting parameter is necessary
to recognize the clusters whatever the density or the temperature. In previous
works [1, 2, 3], we checked that the cluster size distribution does not depend
significantly on the specific definition of self-bound clusters mentioned above.

The mapping between thermodynamics and clustering can be studied by
performing classical microcanonical molecular dynamic simulations of a sim-
ple fluid. Particles confined in a cubic container interact through a Lennard-
Jones potential (V (r) = 4ε((σ/r)12 − (σ/r)6)), where ε and σ define the en-
ergy and length scales respectively. The natural time-unit is defined by τ0 =
√

mσ2/(48ε), where m is the mass of the particles. When Coulomb interaction
is included, it is done with the prescription of reference [9]. Self-bound clusters
are recognized by means of Hill’s criterium. The details of the calculations can
be found in references [1, 2, 3].

In order to establish an accurate mapping between thermal and geometrical
properties of this fluid, we first present results for the case of a large system
(N ' 12000 particles) with periodic boundary conditions [1] (and, of course
without Coulomb interaction):

• When crossing the condensation curve at sub-critical densities, a macro-
scopic cluster appears in the liquid-gas coexistence region1. Although
defined in a complete different theoretical framework, our clusters mark
the liquid-gas coexistence line as Fisher’s clusters do [21]2.

• A percolation line starts at the thermodynamical critical point (within
the uncertainties inherent to the critical slowing down) and goes through

1This correspondence between thermodynamics and clustering is not observed when clus-
ters are simply defined by a constant interaction radius in the configurational space.

2Notice however that Fisher’s clusters are non-interacting and not microscopically defined.
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the supercritical region of the phase diagram. Thus, a power law behavior
of the cluster size distribution does not necessarily imply that the system
is in its thermodynamical critical state. Also notice that this percolation
line does not extend below the critical temperature.

• It can be shown that the Hill prescription we are using to define self-bound
clusters in a realistic fluid is equivalent [22] to the prescription introduced
by Coniglio and Klein [23] to define physical clusters in the lattice-gas
model. This gives a theoretical framework to understand the existence of
this critical line. Along this line (usually called Kertész line), the critical
exponents are those of the random percolation, except at the thermody-
namical critical point, where the exponents are those of the correlated
percolation [23].

• The energy of the system is nearly constant along the critical percolation
line.
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Figure 1: Phase diagram of a Lennard-Jones fluid (including Coulomb interaction) of N =
189 particles confined in a container. The position of the coexistence line is sketched by filled
dots. Lines of equal energy are indexed by the energy per particle of the system. The shaded
area indicates the location of the percolation critical region. The dashed area shows tentatively
the domain of application of the standard SEM. Temperature T and density ρ are in units of
the Lennard-Jones parameters (ε and σ). The full circle indicates the critical point.

These results remain valid in small systems [2]. We have studied the behaviour of
small systems like atomic nuclei by performing similar calculations with N = 189
particles confined in a cubic container with perfectly reflecting walls and inter-
acting via a Lennard-Jones potential plus Coulomb. The “phase diagram” is
represented in figure 1. Although the sharp effects found in the thermodynam-
ical limit are smoothed by the finite size and surface effects, we reach basically
the same conclusions.

• As is shown in figure 2, the shape of the cluster size distribution changes
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suddenly when crossing the condensation curve for a very small variation
of temperature.

• The cluster size distribution presents a power law behavior along a per-
colation “line” (more precisely a band due to the finite size effects) which
starts at the thermodynamical critical point (region) (see figure 1). Along
this line, the slope of the cluster size distribution (τ ' 2.5) is in accordance
with percolation theory3.

We note also that, in the supercritical region, a given cluster size distribution
corresponds qualitatively to a given energy of the system. We stress that the
converse is not true, notably below the coexistence line.
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Figure 2: Cluster size distributions ns just above (T = 0.82) and below (T = 0.77) the
coexistence “line” at ρ = 0.1 for a system of N = 189 particles.

Studying the degrees of freedom associated to the internal motion of the
particles inside the clusters, and the degrees of freedom associated to the center
of mass motion of these clusters, we define two ”effective temperatures”, T ∗(s)
and T cm(s), as two third of the average kinetic energy of the corresponding
ensemble 4. Let us define the internal velocity v∗ as the velocity of a particle
calculated in the center of mass system of the cluster it belongs to. As is shown in
Fig 3, the internal velocity distribution for cluster of size s = 2 contrasts strongly
with a Maxwell distribution. As it should be, by definition of the self-bound
clusters, the distribution is truncated at v∗ = 1. However, increasing the cluster
size, the velocity distribution tends to a Maxwell distribution characterized by
the asymptotic temperature T ∗(s) for s > 50 (see figure 4). Similar results [24]

3Due to the range of our potential, in a small system, all particles interact with each other,
so the mean field result is expected.

4However, if we were able to isolate a cluster from the others (this is what happens during
the expansion), the internal effective temperature would become the real thermodynamic
temperature of the isolated fragment.
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Figure 3: Internal velocity distribution for different cluster sizes s (for ρ =
0.50 and T = 1.15). For the purposes of comparison, the Maxwell distribution
function is represented for T = 1.15 (temperature of the system) and for T =
0.73 (asymptotic internal effective temperature of the clusters, see figure 4).

have been recently obtained by calculating the first order corrections (namely
the interaction between a monomer and a self-bound cluster) to a perfect gas of
clusters at low density. Whatever the size of the clusters and the thermodynamic
state of the system, the internal effective temperature T ∗(s) is always less than
the (real) temperature of the fluid. On the other hand, the effective temperature
associated to the ”gas of clusters”, T cm is greater than the (real) temperature of
the fluid. In figure 4, we illustrate this inequality which was already mentioned
[24]. In brief, the system can be seen as a ”hot” gas of ”cold” physical clusters.

The present results show that various basic hypothesis of the SEM [5, 7] are
not fulfilled. These models consider an ensemble of spherical, non-interacting
clusters, with an internal temperature equal to the one of the global system,
confined in a volume at low densities (ρ ∼ 0.2). On the contrary, we find that:

1. The clusters exhibit fractal shapes in the confined system5 (see figure 5,
left). We must point out that it is not incompatible with the cold spherical
fragments we expect at the end of the expansion. Indeed, by following the
evolution of a self-bound cluster during the expansion (cf section 3) we
find that it becomes spherical as it should be (see figure 5, right).

2. Even at densities as low as ρ = 0.1 − 0.2, the strong interaction (with-
out Coulomb) between clusters still represents about 40 % of the total

5As it should be, in large systems (N = 12000), the fractal dimension (Df = 2.55) of the
self-bound clusters along the percolation line has been checked to be in agreement with the
one of random percolation [3].
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Figure 4: Effective internal temperature of clusters T ∗(s) and temperature of the gas of
clusters Tcm(s) as a function of the cluster size s, for ρ = 0.50 and T = 1.15. The real
temperature of the fluid (dashed line) is indicated for comparison. The system contains
N = 189 particles.

potential energy.

3. The internal temperature of the clusters is lower than the temperature
of the system. Thus, this fragments will become in the course of the
expansion (see next section) the observed fragments, without significant
particle evaporation.

Usually three observables are used to extract the temperature from nuclear
experimental data: i) the kinetic energies of the fragments, ii) the population
of the excited states of fragments [16] and iii) the ratio of isotopic yields [27].
All these methods assume that these observables will yield the thermodynamic
temperature of the system, T . Our study contradicts this. As shown in figure
5, the internal and “kinetic energy” temperatures of the fragments are not a
measure of T .

3 Fragments in Expanding Systems

Having studied the properties of clusters in confined systems, we now turn to
the problem of their evolution once the system is allowed to expand freely. The
questions we want to address are :

• How and when do the fragments appear ? Does the asymptotic fragment
size distribution and kinetic energies relate to the initial configuration or
to an intermediate freeze-out configuration ?
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t = 0 t = 400τ0

Figure 5: Typical shape of the largest cluster in the confined medium (t = 0) and at asymp-
totic times after expansion (t = 400τ0).

• Does the system follow a quasi-static path up to some, low density, freeze-
out configuration where the final fragment distribution would be deter-
mined, as assumed in the standard [4, 5, 6, 7] models ?

• How can the temperature and density of this initial configuration be in-
ferred from the information measured at asymptotic times ?

In order to answer these questions, we have analyzed a number of expansions
of the system using the CMD with Lennard-Jones plus Coulomb potentials
[9]. The system is characterized, as in section 2, by its energy (microcanonical
ensemble), its density and the number of particles. It is enclosed in a cubic
container with perfectly reflective walls. The calculations proceed in two steps :

• After a thermalisation period, the container is removed at a time defined
as t = 0.

• The system is then allowed to expand freely during a period of time suf-
ficient to establish the final (asymptotic) fragment size distribution.

Let us first examine the time evolution of the components of the energy. Figure
6 displays, the evolution of the L-J potential energy, the Coulomb energy, the
total kinetic energy and the total energy. At t = 0, the effect of the opening
of the container is clearly visible by a rapid decrease of the potential energy.
This corresponds to the fact that the mean distance between clusters increases
rapidly. It can be noted that the asymptotic potential energy does not go to zero,
indicating the existence of fragments of finite size. The kinetic energy shows a
complementary behaviour : after a sharp decrease, the Coulomb acceleration is
clearly observed.

8



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-50 0 50 100 150 200 250 300 350 400
Time (units of     )

E
ne

rg
y 

(u
ni

ts
 o

f  
  )

 
ε

Etot

Epot (Coulomb)
Epot (w/O Coulomb)

Ekin

τ0

Figure 6: Energies as a function of time for a CMD calculation performed for Etot = 1.2,
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Figure 7: Time evolution of the size of the largest fragment. Full dots correspond to the
average values for a 100 calculations, the line to a specific calculation. The container is
removed at time t = 0 (see text). CMD calculations with Etot = 1.2, N = 189 and ρ = 0.8.

We shall now study the evolution of the size of the largest fragment (Figure
7). The line gives the result of a single event whereas the full dots represent an
average over 100 expansions. The striking feature of this figure is the observation
that the average value of the largest fragment at asymptotic times is very close
to the average value of the largest cluster identified in the container (t < 0). The
correspondence between the largest cluster in the container (time average) and
the asymptotic largest fragment (event average) is systematically observed. This
conclusion is valid for all the calculations that we have performed, independently
of the initial density and energy.

Figure 8 shows confirmation of this conclusion by the examination of more
detailed quantities. It presents the fragment size distributions as a function
of time. To within statistical fluctuations, one observes that they are almost
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Figure 9: Average multiplicity of fragments of size s = 5 as a function of time. The
container is removed at time t = 0 (see text). CMD calculations with Etot = 1.2, N = 189
and ρ = 0.8.

identical. Figure 9 shows the evolution in time of the multiplicity of fragments
of size s = 5. There again, the asymptotic value is very close to the initial one.
In view of the rapid decrease of the fragment size distribution observed (figure
8), the stability of this quantity is impressive.

The correlation between the initial and final size distributions is, we believe,
a consequence of the violent expansion phase (which follows the opening of the
container), the small size of the system and the presence of the Coulomb repul-
sion between the clusters. Because of the small size of the system, the fragments
are always close to the surface and will escape freely into the vacuum. For a
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very large system, the expansion phase would give rise, in the central region,
to substantial thermal and chemical activity and hence modify the thermody-
namic parameters of the system. In a small system, this modification appears
almost unobservable. The influence of the expansion phase is enhanced by the
presence of the Coulomb force. The Coulomb potential not only accelerates
the expansion but also introduces, between the fragments, a Coulomb barrier,
which inhibits particle exchanges.
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Figure 10: Persistence (see text) of fragments of size s > 3 and density of the expanding
system, as a function of time. Etot = 1.2, N = 189 and ρ = 1.3.

The violence of the expansion phase is illustrated by the figure 10 which
shows the persistence of fragments and the density of the system, as a function of
time. The persistence is defined as the fraction of the number of particles present
in a given fragment which will remain in this fragment at asymptotic times
(t = 400τ0). The density, a poorly defined quantity in such an inhomogeneous
expansions, is deduced from the r.m.s. radius of an uniformly charged sphere
of the same Coulomb energy. Figure 10 shows that this persistence evolves
very rapidly and almost reaches its asymptotic value at densities of the order of
0.8: An exchange of particles between fragments is clearly observed during this
(short) period, but this limited chemical activity does not induce a modification
of the average size of the fragments.

The picture that comes out from these calculations therefore corresponds to
a fast, non equilibrium, expansion of a gas of clusters. This expansion acts as
a ”developer” of the presence of these clusters, the Coulomb repulsion helping
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Figure 12: Same as figure 11, but with Coulomb interaction. Remark the difference in the
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to ”fix” them. Thus, the (event) average distribution of fragments reflects the
(time) average distribution of clusters in the dense and hot initial state.

We now study the kinetic energies of the fragments. Figure 11 shows the
asymptotic kinetic energy of expansions without Coulomb interaction (Etot =
0.2). As can be seen, the kinetic energies obtained from different starting den-
sities (0.3 and 1.3) are quantitatively different. This demonstrates once more
that the expansion is a non-equilibrium phenomenon. If equilibrium, at a given
energy, was maintained during the expansion, the system starting from ρ = 1.3
would, at a point in time, reach the same point in {T − ρ} space as the one
from which the system at ρ = 0.3 starts and hence the two systems would be
indistinguishable in all respect: Figure 11 demonstrates that it is not the case.

Figure 12 shows the kinetic energies in the case with Coulomb interaction.
The shape of these distributions is characteristic of the presence of Coulomb
forces and is close to what is observed in nuclear reactions at Fermi bombarding
energies (∼ 50 MeV/A) for symmetric nuclei [14, 25]. The solid lines show a
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qualitative (analytical) prediction of what would be expected in the case of a
uniformly charged medium.

The important feature that is revealed by this figure is the dependence of the
kinetic energies on the initial density. This result appears to confirm the evo-
lution suggested by the analysis of the fragment size distribution. Very rapidly
after the removal of the container, the fragments cease to strongly interact with
the medium and are accelerated by the (Coulomb) repulsive potential. Because
this expansion takes place out of equilibrium, the Coulomb energy does not
transform into thermal energy but in fragment kinetic energy. The higher the
density of the initial configuration, the greater the final kinetic energies are. We
can therefore consider that the asymptotic kinetic energies are a “measure” of
the density at which the systems departs from equilibrium.

This scenario accounts, at least partially, for the radial flow often associated
with multifragmentation processes [14, 25]. As stated above (section 1), the
standard method of analysis, using the SEM, assumes a low density configura-
tion and therefore naturally underpredicts the kinetic energies of the fragments
when the system has evolved (out of equilibrium) from a high density state. To
compensate for this, an extra component of “radial flow” is artificially intro-
duced. In the scenario we suggest, such an extra flow is not necessary when the
calculation is performed at the correct initial density. It is important to remark
that our scenario does not necessarily imply large values for the kinetic energy.
For example, for peripheral heavy ion reactions, no initial compression is ex-
pected. Even more, for proton-nucleus or π-nucleus collisions, initial densities
lower than the normal equilibrium nuclear density are plausible because of the
formation of holes inside a nucleus with normal volume [26].

Having “measured” the density, we now turn to the estimation of the temper-
ature. The sensitivity of the kinetic energies to the density, provides a “method”
to determine the thermodynamic parameters of the point at which the system
departs from equilibrium. The analysis of the fragment size distribution will
select which iso-n(s) line is to be considered. The analysis of the kinetic en-
ergies will determine the density. The intersection of both will yield T and ρ.
Evidently, this method is physics (model) dependent, i.e. it is only if one is able
to calculate the relationship E(T, ρ) and the fragment size distribution at each
(T, ρ) point that the thermodynamical parameters can be extracted from the
analysis of the data measured at asymptotic times.

4 Final remarks

We have explored a new scenario of multifragmentation, based on the observa-
tion that a dense and hot fluid, at equilibrium, can be viewed as a hot gas of
cold clusters. These clusters are defined as self-bound ensembles of particles.
When the system is allowed to expand freely, it proceeds, out of equilibrium, as
an ensemble of interacting clusters. Once these clusters cease to interact with
each other, they become the observable fragments.

We believe that this ”Little Big Bang” scenario is not only more realistic
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than the ”standard” low density freeze-out model but that it also allows to solve
a number of recurrent problems:

• Equilibrium is assumed only at the beginning of the process, when the high
density and temperature make this assumption more likely. No ”quasi-
static” hypothesis of expansion up to a low freeze-out density is needed.

• Due to this compacity, the Coulomb repulsion between fragments gener-
ates larger kinetic energies. Clusters in the dense medium have ”ramified”
(fractal in large systems) forms, allowing more compact configurations in
the initial stage. The observed radial flows can thus be explained, at least
partially, in a natural way.

• Isolated fragments are cold, because the precursor clusters are already
cooler than the ensemble of the system.

The aim of this work was to present a new scenario of multifragmentation,
not a well finished model producing results directly comparable with experi-
mental data. One has to keep in mind that the present scenario is supported
by classical molecular dynamics simulations of the expansion of a system of
particles interacting through Lennard-Jones plus Coulomb potentials, initially
confined in a container. Although we believe that these results are generic for
describing the free expansion of any simple fluid (and that nuclear matter at
high temperatures behaves as a simple fluid), it is necessary to confront our
results with other calculations. Namely, with Quantum Molecular Dynamics
[12, 13] calculations to test the equilibrium hypothesis in the first stages of the
reaction, and with Fermionic Molecular Dynamics [28] to check the importance
of quantum effects, particularly at sub-critical temperatures.

We would like to thank F. Lavaud for his contribution to the expansion phase
calculations. One of us (N.S.) wishes to acknowledge financial support of the
European TMR Network-Fractals (Contract number: FMRXCT-980183).
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