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recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-00002099v3


cc
sd

-0
00

02
09

9,
 v

er
si

on
 3

 -
 3

 A
ug

 2
00

4

Partial energies fluctuations and negative heat

capacities

X. Campi∗and H. Krivine
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Abstract. We proceed to a critical examination of the method used in nu-
clear fragmentation to exhibit signals of negative heat capacity. We show that
this method leads to unsatisfactory results when applied to a simple and well
controlled model. Discrepancies are due to incomplete evaluation of potential
energies.

The possibility to observe negative heat capacities has been recently the
object of much interest and debate [1–10]. This is partly because a negative
heat capacity seems counter-intuitive (how can adding energy to a system
make it cooler ?) and partly and more interestingly because this can reveal
new physics far from the standard thermodynamic limit.
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Let us first briefly review our present theoretical understanding of this
issue. In the canonical ensemble, heat capacities (proportional to the fluc-
tuations of the energy) are always positive. This ensemble is adequate for
(infinitely) large systems, with temperature driven by an external thermal
bath. In the microcanonical ensemble, the heat capacity at constant vol-
ume is given by the derivative of the entropy S with respect to the energy

1

cvT 2 = −
∂2S
∂E2 , where temperature is defined as 1

T
= ∂S

∂E
. This is the correct

ensemble for finite systems [1]. For these systems, entropy is not necessarily
an extensive function. Therefore, the entropy may have a convex part as a
function of the energy. If this occurs, then one expects a backbending of the
temperature as a function of the energy and a negative heat capacity. This
effect should manifest most clearly in “small systems”, i.e. systems with a
“few” number of particles 1, due to larger surface to volume ratios.

In practice, using data from experiment or from numerical simulations,
two equivalent methods have been used to calculate heat capacities. a) Di-
rectly, using the definition 1/cv = (∂T/∂E)v. One creates samples at slightly
different energies and calculates the corresponding (microcanonical) temper-
atures. b) Using formula 2

cv =
C2

1

C1 −
σ2

K

T 2

, (1)

where C1 = 3

2
N is the heat capacity of the perfect gas and σ2

K =< K2 >
− < K2 > the fluctuation of the kinetic energy.

A number of theoretical calculations predict the existence of negative
heat capacities in “small systems”. Among the on-lattice calculations, we
will mention the microcanonical Metropolis Monte Carlo (MMC) results of
D.H.E. Gross [1] in a ten-colors Potts model, those of Chomaz and Gul-
minelli [3, 4] with a lattice-gas model with average constrained volume and
those of Pleimling and Hüller [5] with the 2−d and 3−d Ising model at con-
stant magnetization. In the domain of atomic clusters, Labastie and Whet-
ten [2], using MMC techniques, predicted negative cv around the melting
temperature of small Lennard-Jones clusters. D.H.E. Gross [1] who exten-
sively investigated the microcanonical thermodynamics of “small systems”

1Systems with large number of particles interacting with long range forces can also be
considered [1, 12]. This will not be addressed here.

2It should be noticed that in the derivation of this formula [11] one considers
σ

2

K

〈K〉2 as

a small parameter. Therefore, the formula is not valid when σ
2

K
diverges.

2



found a clear signal of negative cv in realistic calculations of the liquid-gas
transition of metal clusters. Dorso and collaborators also found a signal for
a Lennard-Jones fluid, but only at very low densities (less than 1/10 of the
normal liquid density) [6].

The experimental finding of negative heat capacities in “small systems”
has been announced, first in the fragmentation of atomic nuclei [7] and latter
in the solid-liquid transition of sodium atoms clusters [9] and in the liquid-gas
transition of hydrogen atoms clusters [10].

Method (a) has been used in references [1–3, 6, 9, 10] and method b) in
references [3,6]. The use of method b) is particularly difficult with fast time
evolving systems, because it demands a determination of the fluctuations of
the kinetic energy at times that are experimentaly inaccesible. The analysis
of nuclear fragmentation data [7,8] by D’Agostino et al. has been performed
with a method derived from b), adapted to the information given by the
experimental data. Below we discuss in detail the validity of this method.

The goal is to infer for each event, the kinetic energy of the system when
fragmentation occurs. One proceeds as follows. This energy K = E − V is
first written as the total energy E (taken as the sum of the binding B0 < 0 and
the excitation E∗ energies of the system), minus the inter-particle potential
energy V . Looking at the system as an ensemble of fragments, the potential
energy can be split into a sum V =

∑
i Vi +

∑
i<j Vij of intra-fragment

∑
i Vi

and inter-fragment potential energies
∑

i<j Vij . Adding and subtracting the
sum of the binding energies Bi of the fragments and splitting the inter-
fragment interaction into its Coulomb and nuclear parts, one arrives at the
(exact) expression

K = E −

∑

i

(Vi − Bi) −
∑

i

Bi −
∑

i<j

V Coul
ij −

∑

i<j

V nuc
ij (2)

In order to proceed with data it is assumed that the information taken
at late times, when fragments hit the detectors, suffices to reconstruct the
above energy partition at earlier times, when the system was at the required
thermodynamic conditions (of temperature, density, pressure...). In practice,
the quantities that are effectively measured are the total energy E and the
charge of the fragments detected in the event. From the later, with plausi-
ble hypothesis on the number and distribution of the undetected neutrons,
it is possible to estimate the value of

∑
i Bi at early times. This has been

done carefully (see ref. [7, 8]) and the authors have checked that the final
results are rather insensitive to details. Next, it is assumed that when frag-
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mentation takes place, the volume of the system is sufficiently large (of the
order of three to ten times the normal volume) to neglect the nuclear interac-
tion between the fragments

∑
i,j V nuc

ij . The (inter-fragment) Coulomb energy
term is estimated placing the detected charge distribution of spherical and
compact fragments inside a sphere of a given volume. The amplitude of the
fluctuations of this term is rather uncertain, because neither the shape and
compactness (see below) nor the positions of the fragments inside the volume
are under control. Finally, the term

∑
i(Vi−Bi), which represents the change

of intra-fragment potential energy due to deformation and non-compactness,
is neglected. With these assumptions, the heat capacities are calculated from
the fluctuations, at fixed energy E, of the quantity

K ′ = E −

∑

i

Bi −
∑

i<j

V Coul
ij (3)

In short, the fluctuation of the kinetic energy K is replaced by the fluctuation
of K ′. Data exhibit a significant rise of fluctuations of K ′ in a domain of a
few MeV/nucleon. Applying formula

c′v =
c2

1

c1 −

σ2

K′

T 2

(4)

(the temperature is estimated assuming that fragments behave as classical
particles and nucleons inside fragments as a Fermi gas), the authors [7, 8]
conclude that negative heat capacities have been observed in nuclear frag-
mentation data.

It is rather straightforward to test in a simple model the effects of sub-
stituting the fluctuations of K by those of K ′. We consider a Lennard-Jones
fluid with N = 64 particles confined in a container. In order to better local-
ize the origin of discrepancies, we take uncharged particles. We will discuss
below the possible influence of Coulomb interactions.

Molecular dynamics equations of motion are solved with a time step
δt = 0.01(mσ2/48ǫ)1/2, ensuring a conservation of the total energy better
than 0.05 percent. Technical details are as in reference [13]. Calculations
(microcanonical) are performed at various energies and volumes. Tempera-
tures are calculated as T = 2K/3N . We checked that this is a good approx-
imation of the true microcanonical temperature [11]. After a thermalization
time of various 106 time steps, the relevant quantities are sampled every 103

steps. Using autocorrelation functions, we verified that these intervals are
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large enough. Averages are made on samples of 104 events. Fragment are
identified using energetic Hill’s criterion [15]. This method gives results very
similar to those of Dorso and Randrup [16]. On-lattice, it is almost identical
to the Coniglio-Klein prescription, used by Chomaz and Gulminelli [3]. From
a mass table of Lennard-Jones clusters [14] we determine, event by event, the
quantity K ′ = E −

∑
i Bi and following formula (4), we calculate c′v.

ρ0.2 0.4 0.6 0.8 1
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Figure 1: Phase diagram of a Lennard-Jones fluid with N = 64 particles
confined in a container. Iso-contour lines indicate values of the quantity
σ2

K ′/T 2C1. When this quantity exceeds one (grey area), c′v (see text) is neg-
ative. The position of the liquid-gas coexistence line is sketched by filled
triangles. Temperature T and density ρ are in units of the Lennard-Jones
potential.

We see that when σ2

K ′/T 2C1 > 1, c′v becomes negative. Figure 1 reveals
that this quantity exceeds one in a large zone of the density-temperature
phase diagram. The location of the zone of maximal fluctuation of K ′ is
easily understood. These fluctuations are nothing but those of the fragment
mass distribution n(A) and one expects these fluctuations to be maximum
around the critical point. Indeed, if the binding energy of the fragments is
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Figure 2: The heat capacity cv/N (open circles and open squares, see text)
and the quantity c′v/N (filled circles), as a function of the excitation energy
per particle E∗/N (in units ǫ of the Lennard-Jones potential) for isochore
paths at ρ = 0.10, 0.35 and 0.80.

well represented by a mass formula B(A) = avA + asA2/3, then σ2

K ′ = a2

s(<
m2

2/3
> − < m2/3 >2), where m2/3 is the standard moment of order 2/3 of

n(A).
The above results show that, at least in the present model, c′v is not
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a satisfactory representation of the heat capacity. Indeed, heat capacities
cannot be negative in the (monophasic) super-critical region (T > Tcritical).
Moreover, molecular dynamics simulations indicate that in the present model
cv is always positive (except in a small zone at very low density as in ref. [6]
and at low temperatures around the liquid-solid transition as in ref. [2]).
Examples of a comparison of cv and c′v are given in Fig. 2 for isochore
paths at ρ = 0.1, ρ = 0.35 and ρ = 0.80. The heat capacities cv have been
calculated from the fluctuations of K (open circles) and from the derivatives
of the caloric curve (open squares). One remarks that both agree very well.
Note that for the density of 0.1 and a narrow energy domain around 1.0, the
later method predicts a negative heat capacity.

0 200 400 600 800 1000
time steps/50

−200−100
0

100

200

300

400

Figure 3: Time evolution of various quantities at a density of ρ = 0.35
and excitation energy per particle of E∗/N = 4.12. From top to bottom: K
(shifted by 250 units), K ′ (shifted by 100 units),

∑
i(Vi − Bi) and

∑
i<j Vi,j.

The origin of the discrepancy with the conclusions of Ref. [7, 8] can be
localized by looking at the various components of K (equ.(2)) (see Fig.3
and 4). One immediately remarks that the fluctuation of K ′ largely exceeds
the fluctuation of K. A closer examination (see Fig.4) also reveals that
these fluctuations are not in phase. These discrepancies appear because the
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Figure 4: Time evolution of K (continuous line) and K ′ (dashed line), with
an enlarged time scale. Same conditions as for Fig.3

contributions of the terms
∑

i(Vi−Bi) and
∑

i<j Vi,j have been neglected. We
have observed that the contribution of the inter-fragment potential energy
decreases with density but surprisingly, the fluctuation of the intra-fragment
potential energy remains very important at all densities. This means that
in the regions of density and temperature we are looking at, fragments are
not compact spheres. From the above considerations it emerges that for
the present simple model, where physics is well under control, c′v is not a
satisfactory approximation of the heat capacity.

The question that now naturally arises is to what extent this remains
true for real nuclei. One of the main differences is the absence of Coulomb
energy in our analysis. The motivation of our choice is that simpler is the
model, clearer is the identification of the sources of discrepancy. We do not
believe that including Coulomb interaction the situation would drastically
change. Ison and Dorso [17] have shown that adding a Coulomb term to a
Lennard-Jones potential produces no qualitative changes in the heat capac-
ities of small systems. In any case, the problem of the inter-fragment [18]
and intra-fragment energies will persist. By the way, if Coulomb was so
important in nuclei, this would mean that the fluctuations are linked more
to instabilities in a Coulomb gas than to a liquid-gas phase transition and
the whole interpretation should be revised. Furthermore, one has to keep in
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mind that in the analysis of experimental data [7,8] only part of the Coulomb
fluctuations are extracted from experiment, because at each event the spatial
distribution of fragments inside the fragmentation volume is unknown.

The present results illustrate once more the difficulty to study the thermo-
dynamics of “small systems” from data that are (almost) limited to fragment
size distributions measured after their expansion at very late times. We hope
that the results presented here will stimulate the search for new approaches
of this problem.

We are indebted to Ph. Chomaz, F. Gulminelli and M. D’Agostino for
fruitful discussions and for pointing out an error in the plotting of Figures
3 and 4 of a previous version of this paper. We would also like to thank
D.H.E. Gross for stimulating discussions on negative heat capacities in small
systems.
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