44 research outputs found

    Bayesian lasso binary quantile regression

    Get PDF
    In this paper, a Bayesian hierarchical model for variable selection and estimation in the context of binary quantile regression is proposed. Existing approaches to variable selection in a binary classification context are sensitive to outliers, heteroskedasticity or other anomalies of the latent response. The method proposed in this study overcomes these problems in an attractive and straightforward way. A Laplace likelihood and Laplace priors for the regression parameters are proposed and estimated with Bayesian Markov Chain Monte Carlo. The resulting model is equivalent to the frequentist lasso procedure. A conceptional result is that by doing so, the binary regression model is moved from a Gaussian to a full Laplacian framework without sacrificing much computational efficiency. In addition, an efficient Gibbs sampler to estimate the model parameters is proposed that is superior to the Metropolis algorithm that is used in previous studies on Bayesian binary quantile regression. Both the simulation studies and the real data analysis indicate that the proposed method performs well in comparison to the other methods. Moreover, as the base model is binary quantile regression, a much more detailed insight in the effects of the covariates is provided by the approach. An implementation of the lasso procedure for binary quantile regression models is available in the R-package bayesQR

    Quantile regression with group lasso for classification

    Get PDF
    Applications of regression models for binary response are very common and models specific to these problems are widely used. Quantile regression for binary response data has recently attracted attention and regularized quantile regression methods have been proposed for high dimensional problems. When the predictors have a natural group structure, such as in the case of categorical predictors converted into dummy variables, then a group lasso penalty is used in regularized methods. In this paper, we present a Bayesian Gibbs sampling procedure to estimate the parameters of a quantile regression model under a group lasso penalty for classification problems with a binary response. Simulated and real data show a good performance of the proposed method in comparison to mean-based approaches and to quantile-based approaches which do not exploit the group structure of the predictors

    MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications

    Get PDF
    Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications. However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity

    Irregularly Spaced AR and ARCH (ISAR-ARCH) Models

    No full text
    High frequency data in finance are time series which are often measured at unequally or irregularly spaced time intervals. This paper suggests a modeling approach by so-called AR response surfaces where the AR coefficients are declining functions in continuous lag time. The irregularly spaced AR-ARCH (ISAR-ARCH) models contain the usual AR-ARCH models as a special case if the time series is equally spaced. The time between observation arrivals is treated as a stochastic time varying process and modeled as a conditional Weibull distribution to capture the stylized fact of duration clustering. For the ISAR-ARCH process and the conditional Weibull duration (CWD) process, we show how to carry out an exact Bayesian analysis using a Markov chain Monte Carlo method. Model selection and forecasting are handled using the predictive density. Finally, we illustrate our methodology with two examples

    GARCH Models with Outliers

    No full text
    corecore