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Abstract In this paper, a Bayesian hierarchical model for variable selection
and estimation in the context of binary quantile regression is proposed. Ex-
isting approaches to variable selection in a binary classification context are
sensitive to outliers, heteroskedasticity or other anomalies of the latent re-
sponse. The method proposed in this study overcomes these problems in an
attractive and straightforward way. A Laplace likelihood and Laplace priors for
the regression parameters are proposed and estimated with Bayesian Markov
Chain Monte Carlo (MCMC). The resulting model is equivalent to the fre-
quentist lasso procedure. A conceptional result is that by doing so, the binary
regression model is moved from a Gaussian to a full Laplacian framework with-
out sacrificing much computational efficiency. In addition, an efficient Gibbs
sampler to estimate the model parameters is proposed that is superior to the
Metropolis algorithm that is used in previous studies on Bayesian binary quan-
tile regression. Both the simulation studies and the real data analysis indicate
that the proposed method performs well in comparison to the other methods.
Moreover, as the base model is binary quantile regression, a much more de-
tailed insight in the effects of the covariates is provided by the approach. An
implementation of the lasso procedure for binary quantile regression models is
available in the R-package bayesQR.
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1 Introduction

Since the seminal work of Koenker and Bassett (1978), quantile regression
has been studied intensively. Studies that focussed on the theoretical proper-
ties all point to two main benefits of the approach (see e.g., Koenker, 2005).
First, quantile regression is insensitive to heteroskedasticity and outliers, and
thus is able to accommodate non-normal errors, which are common in many
real world applications (Koenker and Bassett, 1978; Koenker, 2005). Second,
quantile regression gives a much more detailed insight in the effects of the
covariates on the different quantiles of the response distribution than what is
captured by mean regression. These unique advantages led to numerous prac-
tical applications in a broad area of research domains such as finance, social
science, ecology and medicine (see, Yu et al., 2003; Koenker, 2005).

Manski (1975, 1985), Kordas (2006) and Benoit and Van den Poel (2012)
showed how these benefits of quantile regression are also of importance in the
context of binary regression. Manski (1975, 1985), Kordas (2006) developed
methods to estimate binary quantile regression models within the frequentist
framework, while Benoit and Van den Poel (2012) propose a Bayesian approach
to the problem.

When statistical models contain many parameters, there is a risk of over-
fitting the specific dataset at hand. The problem is, however, to detect those
parameters that are important and those who are not. The lasso method devel-
oped by Tibshirani (1996) has become widely used as an alternative procedure
to the traditional quadratic loss function for parameter estimation in regres-
sion analysis that deals with this issue. Today, the lasso is a well established
method for variable selection and estimation for regression coefficients and
many extensions have been developed (e.g., Zou, 2006; Wang et al., 2007).

Also in quantile regression models, the problem of overfitting arises. The
first use of penalization in quantile regression is made by Koenker (2004). The
author developed an l1-regularization quantile regression method to shrink
individual effects toward a common value.

In Bayesian terms, the lasso procedure can be interpreted as a posterior
mode estimate under independent Laplace priors for the regression coeffi-
cients (Tibshirani, 1996; Park and Casella , 2008). Li and Zhu (2008) de-
veloped the solution path of the l1 penalized quantile regression, while Wu et
al. (2009) studied penalized quantile regression with adaptive lasso penalties.
Recently, Li et al. (2010) proposed Bayesian regularized quantile regression.

The current paper continues this line of research an proposes a Bayesian
approach to estimate binary quantile regression models with lasso penalty.
This model has the advantages of quantile regression models, that is robust-
ness and detailed insights in covariate effects, and overcomes issues related to
overfitting. Moreover, if the lasso is used as a model selection tool the results
will not be influenced by possible outlying observations. Finally, the lasso pro-
cedure can identify which variables are important for the different quantiles of
the response distribution. These types of insights are totally missed when the
lasso is combined with a logit or probit model.
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The remainder of the paper is as follows. Section 2 discusses general quan-
tile regression, binary quantile regression and the lasso procedure. Section 3
describes the method proposed in this study. It is shown how the model can
be represented as a hierarchical Bayes model and an efficient Gibbs sampler
is developed. In Section 4 the results of extensive simulation studies and a
real data example are discussed. Finally, Section 5 concludes with the main
findings of this research.

2 Methods

2.1 Quantile Regression

Consider the typical regression model given by:

yi = x′iβ + εi, (1)

where yi is the response for the ith sample, xi is a k × 1 vector of variables
(possibly, the first element of xi is 1 in case an intercept is desired), β is a
k × 1 vector of parameters, and εi is the error term. Equation 1 becomes the
quantile regression model given that εi is restricted to have the pth quantile

equal to zero, that is,
∫ 0

−∞ fp(εi)dεi = p, i = 1, · · · , n. Koenker and Bassett
(1978) demonstrate that the regression coefficient vector β can be estimated
consistently as the solution to the minimization of:

n∑
i=1

ρp(yi − x′iβ), (2)

where ρp(·) is the check function defined by

ρp(t) =
|t|+ (2p− 1)t

2
, (3)

Since the check function (2) is not differentiable at the origin, there is no
explicit solution for the regression coefficient vector β. However, minimizing
(2) can be performed by using the AS229 algorithm that was proposed by
Koenker and D’Orey (1987). Koenker and Machado (1999) were the first to
note that the check function (2) is closely related to the asymmetric Laplace
distribution (ALD). The density function of an ALD is:

f(x|µ, σ, p) = σp(1− p) exp{−σρ(x− µ)} (4)

where σ is a scale parameter, p determines the quantile level and ρ is the check
function as in equation (2). Minimizing the loss function (2) can be achieved
by maximizing the likelihood function (4).

Since the Bayesian work of Yu and Moyeed (2001), Bayesian inference for
quantile regression has attracted a lot of attention in the literature (Tsionas,
2003; Dunson and Taylor, 2005; Yu and Stander, 2007; Lancaster and Jun,
2010; Li et al., 2010; Kozumi and Kobayashi, 2011; Alhamzawi and Yu, 2011;
Alhamzawi et al., 2012, among others).
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2.2 Binary Lasso Quantile Regression

In this section, we extend Bayesian lasso quantile regression as reported in Li
et al. (2010) in two ways. First, we consider Bayesian lasso quantile regres-
sion for dichotomous response data, i.e. the binary quantile regression model.
Second, we treat all hyperparameters as unknowns and let the data estimate
them together with the other model parameters. We believe this approach is
valuable, because by doing so, we take the combined advantage of the desirable
characteristics of Bayesian binary quantile regression as well as the excellent
properties of the lasso. One of the standard notations for the binary regression
problem is:

y∗i = x′iβ + εi,

yi = 1, if y∗i ≥ 0, yi = 0 otherwise, (5)

where yi is the observed response of ith subject determined by the latent
unobserved response y∗i .

For a more fundamental treatment of binary quantile regression, we refer
to Manski (1975, 1985), Kordas (2006) and Benoit and Van den Poel (2012)
for an overview. As pointed out above, because quantile regression is able
to accommodate for non-normal errors, binary quantile regression would be
an appropriate tool to classify samples which belong to one of two different
categories. Moreover, the proposed Bayesian approach can deal with a high
dimensional predictor space and this is rarely the case for the optimization
algorithms that are normally used for frequentist quantile regression. A re-
cent exception here is Zheng (2012). Other frequentist approaches to binary
quantile regression can be found in Manski (1975, 1985) and Kordas (2006).

However, all these frequentist approaches have some serious drawbacks.
Benoit and Van den Poel (2012) discuss how the approaches of Manski (1975,
1985) and Kordas (2006) are difficult to optimize. The main reason for this dif-
ficulty is the absence of first order conditions that can be exploited, due to the
multidimensional step function in the estimator. Kordas (2006) tried to solve
the difficult optimization problem of Manski’s methodology by smoothening
the objective function but then ran into difficulties concerning tuning band-
width parameters. Furthermore, asymptotic inference is unsatisfactory with
these methods.

Alternative optimization algorithms have been proposed for Manksi’s es-
timator (e.g., Florios and Skouras, 2008; Zheng , 2012), but despite the good
results in terms of optimization, these methods do not provide guidance on
how inference can be done. In the context of variable selection, however, the
latter is crucial. In many studies the goal is to find a small set of relevant
variables. Due to time and budget constraints, it is of primordial importance
to find this smallest relevant set of variables. Multicollinearity and overfitting
make this task even more difficult. The variable selection approaches proposed
(i.e. least absolute shrinkage and selection operator (lasso)) together with the
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binary quantile regression model are ideally suited to tackle the problem of
predictor dimension reduction in binary datasets.

Mathematically, the lasso estimates of binary quantile regression coeffi-
cients can be calculated by:

min
β

n∑
i=1

ρp(yi − g(x′iβ)) + λ‖β‖1, (6)

where g(x′iβ) = I{x′iβ > 0} and λ ≥ 0 is a Lagrange multiplier. The sec-
ond term in (6) is the so-called l1 penalty binary quantile regression, that

is crucial for the success of the lasso, ‖β‖1 =
∑k
j=1 |βj |. As pointed out al-

ready, l1 penalty term in (6) could be interpreted as a Bayesian posterior
mode estimate under independent Laplace priors for the regression coeffi-
cients (Tibshirani, 1996; Park and Casella , 2008). Thus, if we put a Laplace
prior p(βj |λ) = σλ/2 exp{−σλ|βj |} on each βj and following Yu and Moyeed
(2001), the posterior distribution of β is given by:

f(β|σ, p, y∗, λ) ∝ σn exp{−σ
n∑
i=1

|εi|+ (2p− 1)εi
2

}(σλ
2

)k exp{−σλ
k∑
j=1

|β|}

(7)
where εi = y∗i − g(x′iβ). The Laplace distribution has the attractive property
that it can be represented as a scale mixture of normals with an exponential
mixing density (Andrews and Mallows, 1974).

For any a, b > 0, we have the following equality (Andrews and Mallows,
1974):

exp{−|ab|} =

∫ ∞
0

a√
2πv

exp{−1

2
(a2v + b2v−1)}dv. (8)

Let ν = σλ. Then, the second part in (7) can be written as (Park and
Casella , 2008):

p(β|ν) =

k∏
j=1

ν

2
exp{−ν|βj |}

=

∫ ∞
0

k∏
j=1

1√
2πsj

exp{−β2
j /2sj}

ν2

2
exp{−ν2sj/2}dsj . (9)

This finding motivates us to use the class of gamma priors on ν2 of the
form:

p(ν2|δ, τ) =
τ δ

Γ (δ)
(ν2)δ−1 exp{−τν2}, (10)
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where τ > 0 and δ > 0 are two hyperparameters.

By choosing this prior, we can develop an efficient Gibbs sampling al-
gorithm. In addition, treating the parameters τ and δ as unknowns has an
attractive property in the context of variable selection. As discussed in Sun
et al. (2010) , smaller τ and larger δ leads to bigger penalization. Thus, by
treating τ and δ as unknown parameters we avoid that preset, fixed values
could affect the estimates of the regression coefficients (Sun et al., 2010; Yi
and Xu, 2008). Moreover, it also allows the data to speak for itself and decide
what variables should be selected in the final model or not. Further, we put
a joint improper prior of the form p(τ, δ) ∝ 1 to δ and τ . For σ, we assign a
conjugate gamma prior Gamma(a1, a2), a1 > 0 and a2 > 0. We assign small
values to a1 and a2, e.g. a1 = 0.1 and a2 = 0.1, so that the prior for σ is
essentially noninformative.

The mixture representation in (8) motivates us to write the first part in
(7) as follows (Kozumi and Kobayashi, 2011):

σn exp

{
−σ

n∑
i=1

|εi|+ (2p− 1)εi
2

}
=

n∏
i=1

∫ ∞
0

σ√
4πσ−1vi

exp

{
− (εi − ξvi)2

4σ−1vi
− ζvi

}
dvi

(11)

where ξ = (1− 2p) and ζ = σp(1− p) (see also Alhamzawi and Yu, 2012, for
some details). This mixture representation allows to express a quantile regres-
sion model as well studied normal regression model. In addition, this mixture
approach allows to construct Gibbs sampler rather than the considerable more
time consuming and complex Metropolis-Hastings algorithm.

From equation (11), the fully conditional distribution of y∗ is a mixture of
two truncated normal distributions

y∗i |yi, β, vi =

{
N(x′iβ + ξvi, 2σ

−1vi)I(y∗i > 0), if yi = 1,
N(x′iβ + ξvi, 2σ

−1vi)I(y∗i ≤ 0), otherwise.
(12)

Several algorithms for sampling random draws from the truncated normal
have been developed. We choose to use the sampling scheme as depicted in
Geweke (1991) to generate the y∗.

3 Hierarchical Model and Gibbs Sampler

The Bayesian Lasso binary quantile regression is a Bayesian hierarchical model
given by:
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y∗i = x′iβ + εi,

yi = 1 if y∗i ≥ 0, yi = 0 otherwise

p(y∗|y, β, σ) =

n∏
i=1

∫ ∞
0

σ√
4σ−1πvi

exp{− (y∗i − x′iβ − ξvi)2

4σ−1vi
− ζvi}dvi,

p(β|ν2) =

∫ ∞
0

k∏
j=1

1√
2πsj

exp{−β2
j /2sj}

ν2

2
exp{−ν2sj/2}dsj ,

p(ν2|δ, τ) =
τ δ

Γ (δ)
(ν2)δ−1 exp{−τν2},

p(τ, δ) = 1,

p(σ) = σa1−1 exp{−a2σ}.

Under the above hierarchical model, it is easy to sample y∗, β, σ, ν2, s,v, τ
and δ, where s = (s1, · · · , sk) and v = (v1, · · · , vn). The full conditional dis-
tribution for y∗ is given in (12) and the sampling can be done using Geweke
(1991). The full conditional distribution for βj | · is a normal distribution
N(β̄j , σ̃

2
j ), where:

σ̃j = (σ

n∑
i=1

x2ij/2vi + s−1j )−1, and β̄j = σ̃2
jσ

n∑
i=1

xij(y
∗
i −

∑
l 6=j

xilβl − ξvi)/2vi

The full conditional distribution of σ is gamma with shape parameter a1 +
3n/2 and scale parameter

∑n
i=1{(y∗i − x′iβ − ξvi)2/4vi + p(1− p)vi}+ a2. The

full conditional distribution of ν2 is gamma with shape parameter k + δ and
scale parameter

∑k
j=1 sk/2 + τ . The full conditional distribution of τ again is

gamma with shape parameter δ and scale parameter ν2.
Next, it can be shown that, the full conditional distribution of vi is general-

ized inverse Gaussian distribution, GIG(1/2, b1, b2), where b1 = σ(yi−x′iβ)2/2
and b2 = σ/2. The probability density function of generalized inverse Gaussian
GIG(r, b1, b2) is given by:

f(x|r, b1, b2) =
( b2b1 )r/2

2Cr(
√
b1b2)

xr−1 exp{−1

2
(b1x

−1 + b2x)},

where x > 0, −∞ < r < ∞, b1, b2 ≥ 0 and Cr(·) is a modified Bessel func-
tion of the third kind (Barndorff-Nielsen and Shephard, 2001). We used the
algorithm of Michael et al. (1976) to sample from generalized inverse Gaussian
distribution.

The full conditional distribution of sj is again a generalized inverse Gaus-
sian distribution, GIG(1/2, b1, b2), where b1 = β2 and b2 = ν2.

The conditional posterior distribution of δ is
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p(δ|τ, ν) ∝ (τν2)δ

Γ (δ)
. (13)

A Metropolis step is required to update δ in each iteration.

4 Results

4.1 Monte Carlo experiments

In this section, we apply the proposed Bayesian approach for binary quantile
regression to a number of different data generating processes. By doing so we
control for derivations of the model assumptions versus the effects that are
present in the data generating process. For the proposed model, the MCMC
simulations were implemented in R (R Development Core Team, 2011).

We simulated data from the following regression model:

y∗i = β′xi + εi (14)

The x variables were simulated from the Uniform(−1, 1) distribution. We
used three different vectors of parameters that had to be estimated from the
data.

β = (5, 0, 0, 0, 0, 0, 0, 1)

β = (.85, .85, .85, .85, .85, .85, .85, 1)

β = (3, 1.5, 0, 0, 2, 0, 0, 1)

For each of these three vectors of regression parameters, we then changed
the the distribution of the error term ε. The following error distributions were
taken into account:

εi ∼ N(µ = 0, σ = 1), εi ∼ t(df = 3), and εi ∼ χ2(df = 3) (15)

For every data generating process, we simulated N = 200 observations.
Some pretests indicated that the MCMC algorithm converges quickly for the
data generating processes under investigation. Therefore, the burn-in size was
set at 1, 000 and 4, 000 additional random draws from the posterior were re-
tained. Next, we applied the proposed Bayesian model (BBRQL) as well as the
existing approaches in the field, i.e. binary regression quantiles (BRQ) Manski
(1975) or smoothed binary regression quantiles (sBRQ) (Kordas, 2006). This
process then was repeated for a total of 1000 Monte Carlo replications. Next,
a number of performance measures are calculated for every data generating
process and every modeling technique, i.e. root mean square error (RMSE),
bias and mean absolute error (MAE).
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It is clear that this results in a very large number of performance measures,
i.e. three different performance measures for eight parameters to estimate and
this for nine data generating processes using four different modeling tech-
niques. As a consequence it is not feasible to give all individual results, but
instead we choose to group the results by modeling technique, performance
measure and error distribution. This still gives us nine different box-plots to
analyze.
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Fig. 1 Model performance in terms of bias.

Figure 1 gives us an overview of the performance of the models in terms
of bias. Bias gives the expected difference between the true parameter values
and the point estimates (or Bayes estimates). Larger bias indicates that the
point prediction (or Bayes estimate) is further away from the true parameter
value. Thus, lower bias means better performance. The plots clearly show
that the proposed approach outperforms the frequentist approaches. For all
error distributions considered, the bias is considerably lower for both Bayesian
method.

Figure 2 plots the root mean squared error (RMSE) for every method
and every error distribution that was considered. RMSE is a measure that
represents how stable or how consistent the estimator is. Larger values indicate
that the estimated point predictions (or Bayes estimates) fluctuate largely
around the true parameter value. Lower values are thus preferred.
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Fig. 2 Model performance in terms of RMSE.
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Again, the results show that the proposed approach outperforms the ex-
isting frequentist approaches. The RMSE is considerably lower for the lasso
procedure. Similar as the results in terms of bias, the lasso outperforms the
other methods for normal, Chi-square and Student errors.

Figure 3 plots the mean absolute error (MAE). Similar as RMSE, the
MAE is a measure that indicates how stable or how consistent the estimator
is. Again, larger values indicate that the the estimated point predictions (or
Bayes estimates) fluctuate largely around the true parameter value. Contrary
to RMSE, the MAE is not influenced by outliers. In this context this means
that if a small minority of the 1000 Monte Carlo replications were extremely
bad, this would not influence the MAE as much as it would influence RMSE.
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Fig. 3 Model performance in terms of MAE.

The boxplots of the MAE show that the proposed approach have better
results compared to the frequentist methods. As with the previous perfor-
mance measures, the Lasso outperforms the other methods in the case of the
asymmetric Chi-square errors.

4.2 Pima Indian example

The well-known Pima Indian dataset available in the UCI machine learning
repository, was analyzed using the proposed Bayesian hierarchical models. The
data set consists 8 variables and 532 cases. The dependent variable is whether
adult females of Pima Indians will test postitive or negative for diabetes us-
ing seven covariate measurements. These measurments include the number of
pregnancies (npreg), plasa glucose concentration in an oral glucose tolerance
test (glu), diastolic blood pressure (dp), triceps skin fold thickness (skin), body
mass index (bmi), diabetes pedigree function (ped), and age in years (age).

We treat the hyperparameters of inverse gamma prior as unknowns and
estimate them along with other parameters. Three different quantiles were es-
timated, that is the first quartile, the median and the third quartile. For each
analysis, we ran the algorithm for 20, 000 iterations. The number of burn-in
iteration discarted was chosen based on the trace plots of the MCMC estima-
tion and varied per quantile. To shrinkage the insignificant coefficient to zero
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we used a threshold value, c = 0.1, such that the standardized effect βj is
included if βjσj/σs > 0.1 (Hoti and Sillanää, 2001), where σj is the sample
variance of covariate j and σp is the true variance.

Table 1 Results of binary quantile regression with lasso on Pima dataset.

quantile p=0.25 quantile p=0.5 quantile p=0.75
lower beta upper lower beta upper lower beta upper

npreg -0.11 0.08 0.29 0.00 0.18 0.36 0.00 0.17 0.29
glu 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00
bp 0.00 0.00 0.00 -0.12 -0.02 0.00 0.00 0.00 0.00
sking -0.14 -0.10 0.00 -0.02 0.04 0.10 0.00 0.00 0.00
bmi 0.00 0.00 0.00 -0.24 -0.12 0.00 0.00 0.00 0.00
ped -3.65 -0.47 0.49 0.00 1.43 3.22 0.00 0.17 1.58
age 0.00 0.00 0.00 -0.05 0.00 0.06 0.00 0.00 0.00

Table 1 shows the results of the binary quantile regression with lasso for
different quantiles (i.e. p=0.25, p=0.50 and p=0.75) for the method proposed
in this study. For comparison purposes, we also included the results of logis-
tic regression in Table 2. The tables contain the 95% credible or confidence
intervals and the posterior means and maximum likelihood estimates for the
Bayesian and frequentist methods respectively.

Table 2 Result of logit model on Pima dataset.

logit
lower beta upper

npreg 0.00 0.12 0.24
glu 0.10 0.02 0.03
bp -0.09 -0.06 -0.33
sking 0.00 0.04 0.08
bmi -0.13 -0.06 0.01
ped 0.05 1.16 2.31
age -0.01 0.03 0.07

The results show that both the quantile model for p=0.5 and the logistic
regression model give very similar results. Furthermore, the results from the
quantile regression model show that not all variables exert an effect over the
entire response distribution. For example the variable skin has a negative
influence on the first quartile of the response distribution, while it has no
effect on the other quantiles that were estimated. The opposite is true for
the variable ped. This variable show to be important in the middle and high
quantiles, but is irrelevant for the lower quartile. These effects would have
been totally missed when analysed with popular approaches such as logit or
probit models.
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5 Conclusion

In this paper, we have presented a Bayesian approach for binary quantile re-
gression combined with a variable selection technique, i.e. Bayesian binary
quantile regression with lasso penalty. The main advantages of this approach
are: first, the estimation and variable selection procedure is insensitive with
regard to outliers, heteroskedasticity or other anomalies that can break exist-
ing methods down. And second, the method can identify which variables are
important predictors for the different quantile of the response distribution of
the dependent variable.

In this paper, an l1 regularization method is proposed for binary quantile
regression so that the individual effects are shrunken towards a common value.
A Bayesian approach to this problem is to put Laplace prior distributions on
the regression parameters. A conceptional result is that by doing so, the binary
regression model is moved from a Gaussian to a full Laplacian framework and
this without sacrificing much computational efficiency because of an efficient
Gibbs sampling algorithm that was developed.

The applicability of the methodologies proposed was shown on both simu-
lated as well as real-life data. The results showed that the Monte Carlo exper-
iments strongly favoritized the new approach compared to the existing ones.
That is, for every performance measure or every type of data generating pro-
cess the lasso showed best performance.

Finally, the method proposed was also applied to a real-life dataset. In this
kind of setting, researchers often rely to logit or probit models that are known
to be biased by outliers, heteroskedasticity etc. The current method does not
have this shortcoming and thus could be valuable approaches in this research
setting. However, we are convinced that also in many other fields researchers
could benefit from the attractive properties of the Bayesian lasso combined
with binary quantile regression.
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