4,609 research outputs found

    Back Reaction and Semiclassical Approximation of cosmological models coupled to matter

    Get PDF
    Bianchi -I, -III, and FRW type models minimally coupled to a massive spatially homogeneous scalar field (i.e. a particle) are studied in the framework of semiclassical quantum gravity. In a first step we discuss the solutions of the corresponding equation for a Schr\"odinger particle propagating on a classical background. The back reaction of the Schr\"odinger particle on the classical metric is calculated by means of the Wigner function and by means of the expectation value of the energy-momentum-tensor of the field as a source. Both methods in general lead to different results.Comment: 4 pages, Latex, to appear in: Proceedings of the Second Meeting on constrained Dynamics and Quantum Gravity (Santa Margherita Ligure 1996

    Classical and quantum LTB model for the non-marginal case

    Full text link
    We extend the classical and quantum treatment of the Lemaitre-Tolman-Bondi (LTB) model to the non-marginal case (defined by the fact that the shells of the dust cloud start with a non-vanishing velocity at infinity). We present the classical canonical formalism and address with particular care the boundary terms in the action. We give the general relation between dust time and Killing time. Employing a lattice regularization, we then derive and discuss for particular factor orderings exact solutions to all quantum constraints.Comment: 23 pages, no figures, typos correcte

    "C'est incroyable" : Goethe et la gravure satirique du Directoire ou La comparaison infinie

    Get PDF
    En passant par Francfort, sa ville natale, le 23 août 1797, Goethe fait la découverte d'"environ deux cents gravures satiriques françaises" comme il l'écrit le lendemain à Schiller. Il s'agit de gravures faites il y a deux ou trois ans à Paris, la dernière au mois de mars 1797. [...] De toute façon Goethe choisit 55 de ces gravures, les "schématise" (ibid.), comme il dit lui-même, et en donne une brève description. Résultat: le manuscrit "Recension einer Anzahl französischer satyrischer Kupferstiche" que son secrétaire du nom de Geist recopie sous la dictée de son maître

    A Thinking Person\u27s Guide to Immigration and Environmental Racism at the US - Mexico Border

    Get PDF
    In recent years, more attention has been paid to the immigration crisis at the US-Mexico border thanks in part to the strict immigration restrictions from the Trump administration, such as the family separation policy. Immigration remains a widely misunderstood issue and arguments against increased immigration are often laced with racist stereotypes and perceptions that find their roots in centuries of US policy, court cases, and administrative rules. Similarly, the concept of environmental racism can be difficult for the American public to understand when modern-day racism alone has become more insidious. Intersectionality, a concept coined by sociologist Kimberlé Crenshaw, asks us to examine society and consider the different layers of marginalization that make our lived experiences different from one another, such as sex, race, gender, country of origin, class, sexual identity, disability, and others. The field of environmental racism examines the role of racist policies, practices, and procedures that result in disproportionate levels of environmental harm to individuals and communities of color, as well as result in the exclusion of people of color from environmental goods and services. Rarely have the fields of environmental racism and immigration been examined together, which this paper seeks to accomplish. It is important to understand the history of immigration policies and the role of racism in developing these policies, the humanitarian issues raised in detention facilities along the US-Mexico border, and then to examine these systems and identify where harms under the lens of environmental injustice are taking place. This paper investigates the connections between immigration injustices and environmental injustices at the US-Mexico border under the pretense of social justice arguments, which generally aim for diversity, equity, inclusion, participation, access to resources, and human rights

    Photogrammetry-Based Analysis of the On-Orbit Structural Dynamics of the Roll-Out Solar Array

    Get PDF
    The Roll-Out Solar Array (ROSA) flight experiment was launched to the International Space Station (ISS) on June 3rd, 2017. ROSA is an innovative, lightweight solar array with a flexible substrate that makes use of the stored strain energy in its composite structural members to provide deployment without the use of motors. This paper will discuss the results of various structural dynamics experiments conducted on the ISS during the weeks following launch. Data gathered from instrumentation on the solar array wing during the experiments was previously compared with pre-flight predictions from two different Finite Element Modeling (FEM) efforts. In this paper, data generated from photogrammetry is compared with accelerometer data and used to extend previous conclusions. Whereas previous analyses were only able to track the accelerations of six discrete points on the structure and photovoltaic (PV) blanket of ROSA, the photogrammetry analysis makes available displacements for dozens of points distributed throughout the array. This larger data set makes it possible to compare higher-order PV blanket modes with FEM predictions, in addition to verifying conclusions reached using accelerometer data. The goal in this effort was to better understand the performance of ROSA and to improve modeling efforts for future designs of similar solar arrays

    Structural Analysis Methods for the Roll-Out Solar Array Flight Experiment

    Get PDF
    The Roll-Out Solar Array (ROSA) flight experiment was launched to the International Space Station (ISS) on June 3rd, 2017. ROSA is an innovative, lightweight solar array with a flexible substrate that makes use of the stored strain energy in its composite structural members to provide deployment without the use of motors. This paper discusses the effort to model the structural dynamics of ROSA using finite element modeling. Two distinct and agnostic approaches were used by separate teams to assess the structural dynamics of the solar array prior to ground vibrational testing and flight testing. Results from each approach are compared to measured dynamics from accelerometers and photogrammetry data gathered on orbit. Advantages and disadvantages of each approach are discussed as are preliminary efforts to calibrate the models to the empirical data for the benefit of future modeling efforts on similar space structures

    On time and the quantum-to-classical transition in Jordan-Brans-Dicke quantum gravity

    Get PDF
    Any quantum theory of gravity which treats the gravitational constant as a dynamical variable has to address the issue of superpositions of states corresponding to different eigenvalues. We show how the unobservability of such superpositions can be explained through the interaction with other gravitational degrees of freedom (decoherence). The formal framework is canonically quantized Jordan-Brans-Dicke theory. We discuss the concepts of intrinsic time and semiclassical time as well as the possibility of tunneling into regions corresponding to a negative gravitational constant. We calculate the reduced density matrix of the Jordan-Brans-Dicke field and show that the off-diagonal elements can be sufficiently suppressed to be consistent with experiments. The possible relevance of this mechanism for structure formation in extended inflation is briefly discussed.Comment: 10 pages, Latex, ZU-TH 15/93, BUTP-93/1

    Quantum phantom cosmology

    Full text link
    We apply the formalism of quantum cosmology to models containing a phantom field. Three models are discussed explicitly: a toy model, a model with an exponential phantom potential, and a model with phantom field accompanied by a negative cosmological constant. In all these cases we calculate the classical trajectories in configuration space and give solutions to the Wheeler-DeWitt equation in quantum cosmology. In the cases of the toy model and the model with exponential potential we are able to solve the Wheeler-DeWitt equation exactly. For comparison, we also give the corresponding solutions for an ordinary scalar field. We discuss in particular the behaviour of wave packets in minisuperspace. For the phantom field these packets disperse in the region that corresponds to the Big Rip singularity. This thus constitutes a genuine quantum region at large scales, described by a regular solution of the Wheeler-DeWitt equation. For the ordinary scalar field, the Big-Bang singularity is avoided. Some remarks on the arrow of time in phantom models as well as on the relation of phantom models to loop quantum cosmology are given.Comment: 21 pages, 6 figure

    Consistency of Semiclassical Gravity

    Get PDF
    We discuss some subtleties which arise in the semiclassical approximation to quantum gravity. We show that integrability conditions prevent the existence of Tomonaga-Schwinger time functions on the space of three-metrics but admit them on superspace. The concept of semiclassical time is carefully examined. We point out that central charges in the matter sector spoil the consistency of the semiclassical approximation unless the full quantum theory of gravity and matter is anomaly-free. We finally discuss consequences of these considerations for quantum field theory in flat spacetime, but with arbitrary foliations.Comment: 12 pages, LATEX, Report Freiburg THEP-94/2

    Quantum cosmology with big-brake singularity

    Full text link
    We investigate a cosmological model with a big-brake singularity in the future: while the first time derivative of the scale factor goes to zero, its second time derivative tends to minus infinity. Although we also discuss the classical version of the model in some detail, our main interest lies in its quantization. We formulate the Wheeler-DeWitt equation and derive solutions describing wave packets. We show that all such solutions vanish in the region of the classical singularity, a behaviour which we interpret as singularity avoidance. We then discuss the same situation in loop quantum cosmology. While this leads to a different factor ordering, the singularity is there avoided, too.Comment: 24 pages, 7 figures, figures improved, references added, conceptual clarifications include
    • …
    corecore