13,612 research outputs found

    Thermal evolution of the Schwinger model with Matrix Product Operators

    Full text link
    We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with non-zero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.Comment: 6 pages, 11 figure

    Low-Lying Eigenvalues of the Wilson-Dirac Operator

    Get PDF
    An exploratory study of the low-lying eigenvalues of the Wilson-Dirac operator and their corresonding eigenvectors is presented. Results for the eigenvalues from quenched and unquenched simulations are discussed. The eigenvectors are studied with respect to their localization properties in the quenched approximation for the cases of SU(2) and SU(3).Comment: Poster presented at LATTICE96(poster). 4 pages, LaTeX, fully coloured versions of Figs. 4 and 5 are included as separate gzipped PostScript files or can be obtained from http://www.desy.de/library/cgi-bin/showprep.pl?desy-rep%2F199615

    The eta' meson from lattice QCD

    Full text link
    We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N_f=2 flavours of light quark, this is the so-called eta_2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the eta_2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses.Comment: 16 pages: version accepted for publicatio

    Finite-Size Scaling of Vector and Axial Current Correlators

    Get PDF
    Using quenched chiral perturbation theory, we compute the long-distance behaviour of two-point functions of flavour non-singlet axial and vector currents in a finite volume, for small quark masses, and at a fixed gauge-field topology. We also present the corresponding predictions for the unquenched theory at fixed topology. These results can in principle be used to measure the low-energy constants of the chiral Lagrangian, from lattice simulations in volumes much smaller than one pion Compton wavelength. We show that quenching has a dramatic effect on the vector correlator, which is argued to vanish to all orders, while the axial correlator appears to be a robust observable only moderately sensitive to quenching.Comment: version to appear in NP

    On the efficient numerical solution of lattice systems with low-order couplings

    Full text link
    We apply the Quasi Monte Carlo (QMC) and recursive numerical integration methods to evaluate the Euclidean, discretized time path-integral for the quantum mechanical anharmonic oscillator and a topological quantum mechanical rotor model. For the anharmonic oscillator both methods outperform standard Markov Chain Monte Carlo methods and show a significantly improved error scaling. For the quantum mechanical rotor we could, however, not find a successful way employing QMC. On the other hand, the recursive numerical integration method works extremely well for this model and shows an at least exponentially fast error scaling

    Atomic quasi-Bragg diffraction in a magnetic field

    Get PDF
    We report on a new technique to split an atomic beam coherently with an easily adjustable splitting angle. In our experiment metastable helium atoms in the |{1s2s}^3S_1 M=1> state diffract from a polarization gradient light field formed by counterpropagating \sigma^+ and \sigma^- polarized laser beams in the presence of a homogeneous magnetic field. In the near-adiabatic regime, energy conservation allows the resonant exchange between magnetic energy and kinetic energy. As a consequence, symmetric diffraction of |M=0> or |M=-1> atoms in a single order is achieved, where the order can be chosen freely by tuning the magnetic field. We present experimental results up to 6th order diffraction (24 \hbar k momentum splitting, i.e., 2.21 m/s in transverse velocity) and present a simple theoretical model that stresses the similarity with conventional Bragg scattering. The resulting device constitutes a flexible, adjustable, large-angle, three-way coherent atomic beam splitter with many potential applications in atom optics and atom interferometry.Comment: 4 pages, 5 figure
    corecore