33 research outputs found

    Applications of fluorescence and bioluminescence resonance energy transfer to drug discovery at G protein coupled receptors

    Get PDF
    The role of G protein coupled receptors (GPCRs) in numerous physiological processes that may be disrupted or modified in disease makes them key targets for the development of new therapeutic medicines. A wide variety of resonance energy transfer (RET) techniques such as fluorescence RET and bioluminescence RET have been developed in recent years to detect protein–protein interactions in living cells. Furthermore, these techniques are now being exploited to screen for novel compounds that activate or block GPCRs and to search for new, previously undiscovered signaling pathways activated by well-known pharmacologically classified drugs. The high resolution that can be achieved with these RET methods means that they are well suited to study both intramolecular conformational changes in response to ligand binding at the receptor level and intermolecular interactions involving protein translocation in subcellular compartments resulting from external stimuli. In this review we highlight the latest advances in these technologies to illustrate general principles

    Application of an In Vivo Hepatic Triacylglycerol Production Method in the Setting of a High-Fat Diet in Mice

    No full text
    High-fat (HF) diets typically promote diet-induced obesity (DIO) and metabolic dysfunction (i.e., insulin resistance, hypertriglyceridemia, and hepatic steatosis). Dysfunction of triacylglycerol (TAG) metabolism may contribute to the development of hepatic steatosis, via increased de novo lipogenesis or repackaging of circulating nonesterified fatty acids (NEFAs). Hepatic TAG production (HTP) rate can be assessed through injecting mice with nonionic detergents that inhibit tissue lipoprotein lipase. Potential confounding effects of detergent-based HTP tests (HTPTs) used in longitudinal studies—including the impact on food intake, energy balance, and weight gain—have not been reported. To examine this, male C57BL/6J mice were fed a 10% or 60% kcal diet. After 4 weeks, the mice underwent an HTPT via poloxamer 407 intraperitoneal injections (1000 mg/kg). Weight gain, energy intake, and postabsorptive TAG levels normalized 7–10 days post-HTPT. The post-HTPT recovery of body weight and energy intake suggest that, in metabolic phenotyping studies, any additional sample collection should occur at least 7–10 days after the HTPT to reduce confounding effects. Diet-specific effects on HTP were also observed: HF-fed mice had reduced HTP, plasma TAG, and NEFA levels compared to controls. In conclusion, the current study highlights the procedural and physiological complexities associated with studying lipid metabolism using a HTPT in the DIO mouse model

    XOMA 052, a potent, high-affinity monoclonal antibody for the treatment of IL-1β-mediated diseases

    No full text
    Interleukin-1β (IL-1β) is a potent mediator of inflammatory responses and plays a role in the differentiation of a number of lymphoid cells. In several inflammatory and autoimmune diseases, serum levels of IL-1β are elevated and correlate with disease development and severity. The central role of the IL-1 pathway in several diseases has been validated by inhibitors currently in clinical development or approved by the FDA. However, the need to effectively modulate IL-1β-mediated local inflammation with the systemic delivery of an efficacious, safe and convenient drug still exists. To meet these challenges, we developed XOMA 052 (gevokizumab), a potent anti-IL-1β neutralizing antibody that was designed in silico and humanized using Human Engineering™ technology. XOMA 052 has a 300 femtomolar binding affinity for human IL-1β and an in vitro potency in the low picomolar range. XOMA 052 binds to a unique IL-1β epitope where residues critical for binding have been identified. We have previously reported that XOMA 052 is efficacious in vivo in a diet-induced obesity mouse model thought to be driven by low levels of chronic inflammation. We report here that XOMA 052 also reduces acute inflammation in vivo, neutralizing the effect of exogenously administered human IL-1β and blocking peritonitis in a mouse model of acute gout. Based on its high potency, novel mechanism of action, long half-life and high affinity, XOMA 052 provides a new strategy for the treatment of a number of inflammatory, autoimmune and metabolic diseases in which the role of IL-1β is central to pathogenesis
    corecore