369 research outputs found

    Bistability of Slow and Fast Traveling Waves in Fluid Mixtures

    Full text link
    The appearence of a new type of fast nonlinear traveling wave states in binary fluid convection with increasing Soret effect is elucidated and the parameter range of their bistability with the common slower ones is evaluated numerically. The bifurcation behavior and the significantly different spatiotemporal properties of the different wave states - e.g. frequency, flow structure, and concentration distribution - are determined and related to each other and to a convenient measure of their nonlinearity. This allows to derive a limit for the applicability of small amplitude expansions. Additionally an universal scaling behavior of frequencies and mixing properties is found. PACS: 47.20.-k, 47.10.+g, 47.20.KyComment: 4 pages including 5 Postscript figure

    Rayleigh-B\'{e}nard convection in a homeotropically aligned nematic liquid crystal

    Full text link
    We report experimental results for convection near onset in a thin layer of a homeotropically aligned nematic liquid crystal heated from below as a function of the temperature difference ΔT\Delta T and the applied vertical magnetic field HH and compare them with theoretical calculations. The experiments cover the field range 8 \alt h \equiv H/ H_{F} \alt 80 (HF=H_F = is the Fr\'eedericksz field). For hh less than a codimension-two field hct≃46h_{ct} \simeq 46 the bifurcation is subcritical and oscillatory, with travelling- and standing-wave transients. Beyond hcth_{ct} the bifurcation is stationary and subcritical until a tricritical field ht=57.2h_t= 57.2 is reached, beyond which it is supercritical. The bifurcation sequence as a function of hh found in the experiment confirms the qualitative aspects of the theoretical predictions. However, the value of hcth_{ct} is about 10% higher than the predicted value and the results for kck_c are systematically below the theory by about 2% at small hh and by as much as 7% near hcth_{ct}. At hcth_{ct}, kck_c is continuous within the experimental resolution whereas the theory indicates a 7% discontinuity. The theoretical tricritical field htth=51h_t^{th} = 51 is somewhat below the experimental one. The fully developed flow above RcR_c for h<hcth < h_{ct} is chaotic. For hct<h<hth_{ct} < h < h_t the subcritical stationary bifurcation also leads to a chaotic state. The chaotic states persist upon reducing the Rayleigh number below RcR_c, i.e. the bifurcation is hysteretic. Above the tricritical field hth_t, we find a bifurcation to a time independent pattern which within our resolution is non-hysteretic.Comment: 15 pages incl. 23 eps figure

    Eutectic Colony Formation: A Stability Analysis

    Full text link
    Experiments have widely shown that a steady-state lamellar eutectic solidification front is destabilized on a scale much larger than the lamellar spacing by the rejection of a dilute ternary impurity and forms two-phase cells commonly referred to as `eutectic colonies'. We extend the stability analysis of Datye and Langer for a binary eutectic to include the effect of a ternary impurity. We find that the expressions for the critical onset velocity and morphological instability wavelength are analogous to those for the classic Mullins-Sekerka instability of a monophase planar interface, albeit with an effective surface tension that depends on the geometry of the lamellar interface and, non-trivially, on interlamellar diffusion. A qualitatively new aspect of this instability is the occurence of oscillatory modes due to the interplay between the destabilizing effect of the ternary impurity and the dynamical feedback of the local change in lamellar spacing on the front motion. In a transient regime, these modes lead to the formation of large scale oscillatory microstructures for which there is recent experimental evidence in a transparent organic system. Moreover, it is shown that the eutectic front dynamics on a scale larger than the lamellar spacing can be formulated as an effective monophase interface free boundary problem with a modified Gibbs-Thomson condition that is coupled to a slow evolution equation for the lamellar spacing. This formulation provides additional physical insights into the nature of the instability and a simple means to calculate an approximate stability spectrum. Finally, we investigate the influence of the ternary impurity on a short wavelength oscillatory instability that is already present at off-eutectic compositions in binary eutectics.Comment: 26 pages RevTex, 14 figures (28 EPS files); some minor changes; references adde

    Pattern formation in directional solidification under shear flow. I: Linear stability analysis and basic patterns

    Full text link
    An asymptotic interface equation for directional solidification near the absolute stabiliy limit is extended by a nonlocal term describing a shear flow parallel to the interface. In the long-wave limit considered, the flow acts destabilizing on a planar interface. Moreover, linear stability analysis suggests that the morphology diagram is modified by the flow near the onset of the Mullins-Sekerka instability. Via numerical analysis, the bifurcation structure of the system is shown to change. Besides the known hexagonal cells, structures consisting of stripes arise. Due to its symmetry-breaking properties, the flow term induces a lateral drift of the whole pattern, once the instability has become active. The drift velocity is measured numerically and described analytically in the framework of a linear analysis. At large flow strength, the linear description breaks down, which is accompanied by a transition to flow-dominated morphologies, described in a companion paper. Small and intermediate flows lead to increased order in the lattice structure of the pattern, facilitating the elimination of defects. Locally oscillating structures appear closer to the instability threshold with flow than without.Comment: 20 pages, Latex, accepted for Physical Review

    DNA damage precedes apoptosis during the regression of the interdigital tissue in vertebrate embryos

    Get PDF
    DNA damage independent of caspase activation accompanies programmed cell death in different vertebrate embryonic organs. We analyzed the significance of DNA damage during the regression of the interdigital tissue, which sculpts the digits in the embryonic limb. Interdigit remodeling involves oxidative stress, massive apoptosis and cell senescence. Phosphorylation of H2AX mediated by ATM precedes caspase dependent apoptosis and cell senescence during interdigit regression. The association of ?H2AX with other downstream DNA repair factors, including MDC1, Rad50 and 53BP1 suggests a defensive response of cells against DNA damage. The relative distribution of cells ?H2AX-only positive, TUNEL-only positive, and cells double positive for both markers is consistent with a sequence of degenerative events starting by damage of the DNA. In support of this interpretation, the relative number of ?H2AX-only cells increases after caspase inhibition while the relative number of TUNELonly cells increases after inhibition of ATM. Furthermore, cultured interdigits survived and maintained intense chondrogenic potential, even at advanced stages of degeneration, discarding a previous commitment to die. Our findings support a new biological paradigm considering embryonic cell death secondary to genotoxic stimuli, challenging the idea that considers physiological cell death a cell suicide regulated by an internal death clock that pre-programmes degeneration

    First-principles study of As interstitials in GaAs: Convergence, relaxation, and formation energy

    Full text link
    Convergence of density-functional supercell calculations for defect formation energies, charge transition levels, localized defect state properties, and defect atomic structure and relaxation is investigated using the arsenic split interstitial in GaAs as an example. Supercells containing up to 217 atoms and a variety of {\bf k}-space sampling schemes are considered. It is shown that a good description of the localized defect state dispersion and charge state transition levels requires at least a 217-atom supercell, although the defect structure and atomic relaxations can be well converged in a 65-atom cell. Formation energies are calculated for the As split interstitial, Ga vacancy, and As antisite defects in GaAs, taking into account the dependence upon chemical potential and Fermi energy. It is found that equilibrium concentrations of As interstitials will be much lower than equilibrium concentrations of As antisites in As-rich, nn-type or semi-insulating GaAs.Comment: 10 pages, 5 figure

    Twinning superlattices in indium phosphide nanowires

    Full text link
    Here, we show that we control the crystal structure of indium phosphide (InP) nanowires by impurity dopants. We have found that zinc decreases the activation barrier for 2D nucleation growth of zinc-blende InP and therefore promotes the InP nanowires to crystallise in the zinc blende, instead of the commonly found wurtzite crystal structure. More importantly, we demonstrate that we can, by controlling the crystal structure, induce twinning superlattices with long-range order in InP nanowires. We can tune the spacing of the superlattices by the wire diameter and the zinc concentration and present a model based on the cross-sectional shape of the zinc-blende InP nanowires to quantitatively explain the formation of the periodic twinning.Comment: 18 pages, 4 figure

    Balancing Selection Maintains a Form of ERAP2 that Undergoes Nonsense-Mediated Decay and Affects Antigen Presentation

    Get PDF
    A remarkable characteristic of the human major histocompatibility complex (MHC) is its extreme genetic diversity, which is maintained by balancing selection. In fact, the MHC complex remains one of the best-known examples of natural selection in humans, with well-established genetic signatures and biological mechanisms for the action of selection. Here, we present genetic and functional evidence that another gene with a fundamental role in MHC class I presentation, endoplasmic reticulum aminopeptidase 2 (ERAP2), has also evolved under balancing selection and contains a variant that affects antigen presentation. Specifically, genetic analyses of six human populations revealed strong and consistent signatures of balancing selection affecting ERAP2. This selection maintains two highly differentiated haplotypes (Haplotype A and Haplotype B), with frequencies 0.44 and 0.56, respectively. We found that ERAP2 expressed from Haplotype B undergoes differential splicing and encodes a truncated protein, leading to nonsense-mediated decay of the mRNA. To investigate the consequences of ERAP2 deficiency on MHC presentation, we correlated surface MHC class I expression with ERAP2 genotypes in primary lymphocytes. Haplotype B homozygotes had lower levels of MHC class I expressed on the surface of B cells, suggesting that naturally occurring ERAP2 deficiency affects MHC presentation and immune response. Interestingly, an ERAP2 paralog, endoplasmic reticulum aminopeptidase 1 (ERAP1), also shows genetic signatures of balancing selection. Together, our findings link the genetic signatures of selection with an effect on splicing and a cellular phenotype. Although the precise selective pressure that maintains polymorphism is unknown, the demonstrated differences between the ERAP2 splice forms provide important insights into the potential mechanism for the action of selection

    En bloc resection of bladder tumour: the rebirth of past through reminiscence

    Get PDF
    Purpose: To learn about the history and development of en bloc resection of bladder tumour (ERBT), and to discuss its future directions in managing bladder cancer. / Methods: In this narrative review, we summarised the history and early development of ERBT, previous attempts in overcoming the tumour size limitation, consolidative effort in standardising the ERBT procedure, emerging evidence in ERBT, evolving concepts in treating large bladder tumours, and the future directions of ERBT. / Results: Since the first report on ERBT in 1980, there has been tremendous advancement in terms of its technique, energy modalities and tumour retrieval methods. In 2020, the international consensus statement on ERBT has been developed and it serves as a standard reference for urologists to practise ERBT. Recently, high-quality evidence on ERBT has been emerging. Of note, the EB-StaR study showed that ERBT led to a reduction in 1-year recurrence rate from 38.1 to 28.5%. An individual patient data meta-analysis is currently underway, and it will be instrumental in defining the true value of ERBT in treating non-muscle-invasive bladder cancer. For large bladder tumours, modified approaches of ERBT should be accepted, as the quality of resection is more important than a mere removal of tumour in one piece. The global ERBT registry has been launched to study the value of ERBT in a real-world setting. / Conclusion: ERBT is a promising surgical technique in treating bladder cancer and it has gained increasing interest globally. It is about time for us to embrace this technique in our clinical practice
    • …
    corecore