2,874 research outputs found

    Isotope shifts and hyperfine structure of the Fe I 372 nm resonance line

    Full text link
    We report measurements of the isotope shifts of the 3d64s2a5D4−3d64s4pz5F5o3d^64s^2 a ^5D_4 - 3d^64s4p z ^5F_5^o Fe I resonance line at 372 nm between all four stable isotopes 54^{54}Fe, 56^{56}Fe, 57^{57}Fe, and 58^{58}Fe, as well as the complete hyperfine structure of that line for 57^{57}Fe, the only stable isotope having a non-zero nuclear spin. The field and specific mass shift coefficients of the transition have been derived from the data, as well as the experimental value for the hyperfine structure magnetic dipole coupling constant AA of the excited state of the transition in 57^{57}Fe: A(3d64s4pz5F5o)=81.69(86)A(3d^64s4p z ^5F_5^o) = 81.69(86) MHz. The measurements were done by means of Doppler-free laser saturated-absorption spectroscopy in a Fe-Ar hollow cathode using both natural and enriched iron samples. The measured isotope shifts and hyperfine constants are reported with uncertainties at the percent level.Comment: 5 pages, 5 figure

    Modelling water transport and phosphorus eutrophication in an interconnected lake system : a scenario study

    Get PDF
    The water in the south-western Frisian lake district is highly eutrophicated. Summer chlorophyll-a concentrations often exceed 150 μg.l -1, while total phosphorus (TP) concentrations are mostly above 0.2 mg.l -1. Therefore, a research project was started in 1984 to study the origin and dynamics of phosphorus (P) in the area. The nutrient P was chosen because reducing TP concentrations was believed to result in favourable conditions for restoration of the aquatic ecosystem. The objective of the study was to model the TP dynamics and to use the model for the simulation of management reduction scenarios. In order to achieve this objective, three problems had to be solved. Firstly, information about the water transport, especially in the boundary canals, was poor. This problem was solved by the application of a wind driven water transport model using water levels in the boundary canals. Secondly, the lack of large-scale information about the TP loads from the surrounding polders was solved by an intensive monitoring program. Thirdly, knowledge about the distribution of TP in sediments and about TP exchange processes between water and sediments had to be assessed. The simulations with the dynamic TP mass balance model resulted in TP balances during three periods, showing that there were two main sources in the area: from the surrounding polders and from Lake IJssel. Moreover, management simulation scenarios showed that 75% TP concentration reductions in the external loads would be necessary to achieve the 0. 15 mg.l -1TP concentration standard and incidentally the 0.07 mg.l -1. target concentration

    Effects of quantum space time foam in the neutrino sector

    Get PDF
    We discuss violations of CPT and quantum mechanics due to interactions of neutrinos with space-time quantum foam. Neutrinoless double beta decay and oscillations of neutrinos from astrophysical sources (supernovae, active galactic nuclei) are analysed. It is found that the propagation distance is the crucial quantity entering any bounds on EHNS parameters. Thus, while the bounds from neutrinoless double beta decay are not significant, the data of the supernova 1987a imply a bound being several orders of magnitude more stringent than the ones known from the literature. Even more stringent limits may be obtained from the investigation of neutrino oscillations from active galactic nuclei sources, which have an impressive potential for the search of quantum foam interactions in the neutrino sector.Comment: 5 page

    Overview of the CLEF 2023 SimpleText Lab:Automatic Simplification of Scientific Texts

    Get PDF
    There is universal consensus on the importance of objective scientific information, yet the general public tends to avoid scientific literature due to access restrictions, its complex language or their lack of prior background knowledge. Academic text simplification promises to remove some of these barriers, by improving the accessibility of scientific text and promoting science literacy. This paper presents an overview of the CLEF 2023 SimpleText track addressing the challenges of text simplification approaches in the context of promoting scientific information access, by providing appropriate data and benchmarks, and creating a community of IR and NLP researchers working together to resolve one of the greatest challenges of today. The track provides a corpus of scientific literature abstracts and popular science requests. It features three tasks. First, content selection (what is in, or out?) challenges systems to select passages to include in a simplified summary in response to a query. Second, complexity spotting (what is unclear?) given a passage and a query, aims to rank terms/concepts that are required to be explained for understanding this passage (definitions, context, applications). Third, text simplification (rewrite this!) given a query, asks to simplify passages from scientific abstracts while preserving the main content.</p

    Pre-Hawking Radiation from a Collapsing Shell

    Full text link
    We investigate the effect of induced massive radiation given off during the time of collapse of a massive spherically symmetric domain wall in the context of the functional Schr\"odinger formalism. Here we find that the introduction of mass suppresses the occupation number in the infrared regime of the induced radiation during the collapse. The suppression factor is found to be given by e−βme^{-\beta m}, which is in agreement with the expected Planckian distribution of induced radiation. Thus a massive collapsing domain wall will radiate mostly (if not exclusively) massless scalar fields, making it difficult for the domain wall to shed any global quantum numbers and evaporate before the horizon is formed.Comment: 10 pages, 3 figures. We updated the acknowledgments as well as added a statement clarifying that we are following the methods first laid out in Phys. Rev. D 76, 024005 (2007

    Electroweak Baryogenesis and Standard Model CP Violation

    Full text link
    We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov in which the phase of the CKM mixing matrix is the only source of CPCP violation. This mechanism is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an expanding bubble produced at the electroweak phase transition. In agreement with the recent work of Gavela, Hern\'andez, Orloff and P\`ene, we conclude that QCD damping effects reduce the asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence. We compute the asymmetry analytically. Our analysis reflects the observation that only a thin, outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a new source of CPCP violation.Comment: 36 pages, in LaTeX, one LaTeX figure included, 5 others available upon request, SLAC-PUB-647

    A Reduction-Preserving Completion for Proving Confluence of Non-Terminating Term Rewriting Systems

    Get PDF
    We give a method to prove confluence of term rewriting systems that contain non-terminating rewrite rules such as commutativity and associativity. Usually, confluence of term rewriting systems containing such rules is proved by treating them as equational term rewriting systems and considering E-critical pairs and/or termination modulo E. In contrast, our method is based solely on usual critical pairs and it also (partially) works even if the system is not terminating modulo E. We first present confluence criteria for term rewriting systems whose rewrite rules can be partitioned into a terminating part and a possibly non-terminating part. We then give a reduction-preserving completion procedure so that the applicability of the criteria is enhanced. In contrast to the well-known Knuth-Bendix completion procedure which preserves the equivalence relation of the system, our completion procedure preserves the reduction relation of the system, by which confluence of the original system is inferred from that of the completed system

    Effect of reheating on electroweak baryogenesis

    Get PDF
    The latent heat released during the expansion of bubbles in the electroweak phase transition reheats the plasma and causes the bubble growth to slow down. This decrease of the bubble wall velocity affects the result of electroweak baryogenesis. Since the efficiency of baryogenesis peaks for a wall velocity ∼10−2\sim 10^{-2}, the resulting baryon asymmetry can either be enhanced or suppressed, depending on the initial value of the wall velocity. We calculate the evolution of the phase transition taking into account the release of latent heat. We find that, although in the SM the baryon production is enhanced by this effect, in the MSSM it causes a suppression to the final baryon asymmetry.Comment: 4 pages, 3 figures. References added. Revised version to be published in Phys.Rev.

    SST-GATE: A dual mirror telescope for the Cherenkov Telescope Array

    Get PDF
    The Cherenkov Telescope Array (CTA) will be the world's first open observatory for very high energy gamma-rays. Around a hundred telescopes of different sizes will be used to detect the Cherenkov light that results from gamma-ray induced air showers in the atmosphere. Amongst them, a large number of Small Size Telescopes (SST), with a diameter of about 4 m, will assure an unprecedented coverage of the high energy end of the electromagnetic spectrum (above ~1TeV to beyond 100 TeV) and will open up a new window on the non-thermal sky. Several concepts for the SST design are currently being investigated with the aim of combining a large field of view (~9 degrees) with a good resolution of the shower images, as well as minimizing costs. These include a Davies-Cotton configuration with a Geiger-mode avalanche photodiode (GAPD) based camera, as pioneered by FACT, and a novel and as yet untested design based on the Schwarzschild-Couder configuration, which uses a secondary mirror to reduce the plate-scale and to allow for a wide field of view with a light-weight camera, e.g. using GAPDs or multi-anode photomultipliers. One objective of the GATE (Gamma-ray Telescope Elements) programme is to build one of the first Schwarzschild-Couder prototypes and to evaluate its performance. The construction of the SST-GATE prototype on the campus of the Paris Observatory in Meudon is under way. We report on the current status of the project and provide details of the opto-mechanical design of the prototype, the development of its control software, and simulations of its expected performance.Comment: In Proceedings of the 33rd International Cosmic Ray Conference (ICRC2013), Rio de Janeiro (Brazil). All CTA contributions at arXiv:1307.223
    • …
    corecore