17 research outputs found

    An isoform of hPANK2, deficient in pantothenate kinase-associated neurodegeneration, localizes to mitochondria.

    No full text
    Mutations in the human PANK2 gene have been shown to occur in autosomal-recessive pantothenate kinase-associated neurodegeneration, a syndrome originally described by Hallervorden and Spatz. The kinase catalyses the first and rate-limiting step in the biosynthesis of coenzyme A, a key molecule in energy metabolism. We have determined the exon-intron structure of the hPANK2 gene and identified two alternatively used first exons. The resulting transcripts encode distinct isoforms of hPANK2, one of which carries an N-terminal extension with a predicted mitochondrial targeting signal. An in vitro import assay and in vivo immunolocalization experiments demonstrate a mitochondrial localization of this isoform. We conclude that the symptoms observed in pantothenate kinase-associated neurodegeneration are caused by a deficiency of the mitochondrial isoform and postulate the existence of a complete intramitochondrial pathway for de novo synthesis of coenzyme A

    MitoP2, an integrated database on mitochondrial proteins in yeast and man

    No full text
    The aim of the MitoP2 database (http://ihg.gsf.de/mitop2) is to provide a comprehensive list of mitochondrial proteins of yeast and man. Based on the current literature we created an annotated reference set of yeast and human proteins. In addition, data sets relevant to the study of the mitochondrial proteome are integrated and accessible via search tools and links. They include computational predictions of signalling sequences, and summarize results from proteome mapping, mutant screening, expression profiling, protein–protein interaction and cellular sublocalization studies. For each individual approach, specificity and sensitivity for allocating mitochondrial proteins was calculated. By providing the evidence for mitochondrial candidate proteins the MitoP2 database lends itself to the genetic characterization of human mitochondriopathies

    Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation.

    No full text
    Objective: Neurodegeneration with brain iron accumulation (NBIA) is a group of disorders characterized by magnetic resonance imaging (MRI) changes in basal ganglia. Both missense and nonsense mutations have been found in such patients in a gene encoding the mitochondrial pantothenate kinase (PANK2). Methods: We completed a mutation screen in 72 patients with the diagnosis NBIA based on clinical findings and radiological imaging. The entire coding region of the PANK2 gene (20p12.3) was investigated for point mutations and deletions. Results: We uncovered both mutant alleles in 48 patients. Deletions accounted for 4% of mutated alleles. Patients with two loss-of-function alleles (n = 11) displayed symptoms always at an early stage of life. In the presence of missense mutations (n = 37), the age of onset correlated with residual activity of the pantothenate kinase. Progression of disease measured by loss of ambulation was variable in both groups. We did not observe a strict correlation between the eye-of-the-tiger sign and PANK2 mutations. In 24 patients, no PANK2 mutation was identified. Interpretation: Deletion screening of PANK2 should be part of the diagnostic spectrum. Factors other than enzymatic residual activity are determining the course of disease. There are strong arguments in favor of locus heterogeneity. © 2006 American Neurological Association

    Frequent genes in rare diseases: panel-based next generation sequencing to disclose causal mutations in hereditary neuropathies

    No full text
    Hereditary neuropathies comprise a wide variety of chronic diseases associated to more than 80 genes identified to date. We herein examined 612 index patients with either a Charcot-Marie-Tooth phenotype, hereditary sensory neuropathy, familial amyloid neuropathy, or small fiber neuropathy using a customized multigene panel based on the next generation sequencing technique. In 121 cases (19.8%), we identified at least one putative pathogenic mutation. Of these, 54.4% showed an autosomal dominant, 33.9% an autosomal recessive, and 11.6% an X-linked inheritance. The most frequently affected genes were PMP22 (16.4%), GJB1 (10.7%), MPZ, and SH3TC2 (both 9.9%), and MFN2 (8.3%). We further detected likely or known pathogenic variants in HINT1, HSPB1, NEFL, PRX, IGHMBP2, NDRG1, TTR, EGR2, FIG4, GDAP1, LMNA, LRSAM1, POLG, TRPV4, AARS, BIC2, DHTKD1, FGD4, HK1, INF2, KIF5A, PDK3, REEP1, SBF1, SBF2, SCN9A, and SPTLC2 with a declining frequency. Thirty-four novel variants were considered likely pathogenic not having previously been described in association with any disorder in the literature. In one patient, two homozygous mutations in HK1 were detected in the multigene panel, but not by whole exome sequencing. A novel missense mutation in KIF5A was considered pathogenic because of the highly compatible phenotype. In one patient, the plasma sphingolipid profile could functionally prove the pathogenicity of a mutation in SPTLC2. One pathogenic mutation in MPZ was identified after being previously missed by Sanger sequencing. We conclude that panel based next generation sequencing is a useful, time- and cost-effective approach to assist clinicians in identifying the correct diagnosis and enable causative treatment considerations.status: publishe
    corecore