337 research outputs found
A Component-oriented Framework for Autonomous Agents
The design of a complex system warrants a compositional methodology, i.e.,
composing simple components to obtain a larger system that exhibits their
collective behavior in a meaningful way. We propose an automaton-based paradigm
for compositional design of such systems where an action is accompanied by one
or more preferences. At run-time, these preferences provide a natural fallback
mechanism for the component, while at design-time they can be used to reason
about the behavior of the component in an uncertain physical world. Using
structures that tell us how to compose preferences and actions, we can compose
formal representations of individual components or agents to obtain a
representation of the composed system. We extend Linear Temporal Logic with two
unary connectives that reflect the compositional structure of the actions, and
show how it can be used to diagnose undesired behavior by tracing the
falsification of a specification back to one or more culpable components
Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning
Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.
Solitary magnetic perturbations at the ELM onset
Edge localised modes (ELMs) allow maintaining sufficient purity of tokamak
H-mode plasmas and thus enable stationary H-mode. On the other hand in a future
device ELMs may cause divertor power flux densities far in excess of tolerable
material limits. The size of the energy loss per ELM is determined by
saturation effects in the non-linear phase of the ELM, which at present is
hardly understood. Solitary magnetic perturbations (SMPs) are identified as
dominant features in the radial magnetic fluctuations below 100kHz. They are
typically observed close (+-0.1ms) to the onset of pedestal erosion. SMPs are
field aligned structures rotating in the electron diamagnetic drift direction
with perpendicular velocities of about 10km/s. A comparison of perpendicular
velocities suggests that the perturbation evoking SMPs is located at or inside
the separatrix. Analysis of very pronounced examples showed that the number of
peaks per toroidal turn is 1 or 2, which is clearly lower than corresponding
numbers in linear stability calculations. In combination with strong peaking of
the magnetic signals this results in a solitary appearance resembling modes
like palm tree modes, edge snakes or outer modes. This behavior has been
quantified as solitariness and correlated to main plasma parameters. SMPs may
be considered as a signature of the non-linear ELM-phase originating at the
separatrix or further inside. Thus they provide a handle to investigate the
transition from linear to non-linear ELM phase. By comparison with data from
gas puff imaging processes in the non-linear phase at or inside the separatrix
and in the scrape-off-layer (SOL) can be correlated. A connection between the
passing of an SMP and the onset of radial filament propagation has been found.
Eventually the findings related to SMPs may contribute to a future quantitative
understanding of the non-linear ELM evolution.Comment: submitted to Nuclear Fusio
Bioink properties before, during and after 3D bioprinting
Bioprinting is a process based on additive manufacturing from materials containing living cells. These materials, often referred to as bioink, are based on cytocompatible hydrogel precursor formulations, which gel in a manner compatible with different bioprinting approaches. The bioink properties before, during and after gelation are essential for its printability, comprising such features as achievable structural resolution, shape fidelity and cell survival. However, it is the final properties of the matured bioprinted tissue construct that are crucial for the end application. During tissue formation these properties are influenced by the amount of cells present in the construct, their proliferation, migration and interaction with the material. A calibrated computational framework is able to predict the tissue development and maturation and to optimize the bioprinting input parameters such as the starting material, the initial cell loading and the construct geometry. In this contribution relevant bioink properties are reviewed and discussed on the example of most popular bioprinting approaches. The effect of cells on hydrogel processing and vice versa is highlighted. Furthermore, numerical approaches were reviewed and implemented for depicting the cellular mechanics within the hydrogel as well as for prediction of mechanical properties to achieve the desired hydrogel construct considering cell density, distribution and material-cell interaction
Differential Hoare Logics and Refinement Calculi for Hybrid Systems with Isabelle/HOL
We present simple new Hoare logics and refinement calculi for hybrid systems in the style of differential dynamic logic. (Refinement) Kleene algebra with tests is used for reasoning about the program structure and generating verification conditions at this level. Lenses capture hybrid program stores in a generic algebraic way. The approach has been formalised with the Isabelle/HOL proof assistant. A number of examples explains the workflow with the resulting verification components
Experimental evidence of magnetic flux pumping in ASDEX upgrade
In high-β scenarios with on-axis co-current electron cyclotron current drive, which normally lowers q 0 below unity, the absence of sawteeth suggests the involvement of an additional current redistribution mechanism beyond neoclassical current diffusion. This is supported by imaging motional Stark effect diagnostic measurements, which indicate that q 0 remains consistently around 1. This phenomenon is observed in the presence of a 1/1 mode, indicating its potential role in the current redistribution. It is shown that the mode’s ability to modify the central current and suppress sawteeth increases with plasma pressure. These findings align with a recent theoretical model, which predicts a pressure threshold for sawtooth avoidance by a 1/1 quasi-interchange mode and where this threshold increases with the strength of inward current diffusion. Moreover, the advantages of the flux pumping scenario for future machines are highlighted.</p
Experimental evidence of magnetic flux pumping in ASDEX upgrade
In high-β scenarios with on-axis co-current electron cyclotron current drive, which normally lowers q 0 below unity, the absence of sawteeth suggests the involvement of an additional current redistribution mechanism beyond neoclassical current diffusion. This is supported by imaging motional Stark effect diagnostic measurements, which indicate that q 0 remains consistently around 1. This phenomenon is observed in the presence of a 1/1 mode, indicating its potential role in the current redistribution. It is shown that the mode’s ability to modify the central current and suppress sawteeth increases with plasma pressure. These findings align with a recent theoretical model, which predicts a pressure threshold for sawtooth avoidance by a 1/1 quasi-interchange mode and where this threshold increases with the strength of inward current diffusion. Moreover, the advantages of the flux pumping scenario for future machines are highlighted.</p
Self-similar chain conformations in polymer gels
We use molecular dynamics simulations to study the swelling of randomly
end-cross-linked polymer networks in good solvent conditions. We find that the
equilibrium degree of swelling saturates at Q_eq = N_e**(3/5) for mean strand
lengths N_s exceeding the melt entanglement length N_e. The internal structure
of the network strands in the swollen state is characterized by a new exponent
nu=0.72. Our findings are in contradiction to de Gennes' c*-theorem, which
predicts Q_eq proportional N_s**(4/5) and nu=0.588. We present a simple Flory
argument for a self-similar structure of mutually interpenetrating network
strands, which yields nu=7/10 and otherwise recovers the classical Flory-Rehner
theory. In particular, Q_eq = N_e**(3/5), if N_e is used as effective strand
length.Comment: 4 pages, RevTex, 3 Figure
- …