91 research outputs found

    Functional Interplay of Type-2 Corticotrophin Releasing Factor and Dopamine Receptors in the Basolateral Amygdala-Medial Prefrontal Cortex Circuitry

    Get PDF
    Background: Basolateral amygdala (BLA) excitatory projections to medial prefrontal cortex (PFC) play a key role controlling stress behavior, pain, and fear. Indeed, stressful events block synaptic plasticity at the BLA-PFC circuit. The stress responses involve the action of corticotrophin releasing factor (CRF) through type 1 and type 2 CRF receptors (CRF1 and CRF2). Interestingly, it has been described that dopamine receptor 1 (D1R) and CRF peptide have a modulatory role of BLA-PFC transmission. However, the participation of CRF1 and CRF2 receptors in BLA-PFC synaptic transmission still is unclear. Methods: We used in vivo microdialysis to determine dopamine and glutamate (GLU) extracellular levels in PFC after BLA stimulation. Immunofluorescence anatomical studies in rat PFC synaptosomes devoid of postsynaptic elements were performed to determine the presence of D1R and CRF2 receptors in synaptical nerve endings. Results: Here, we provide direct evidence of the opposite role that CRF receptors exert over dopamine extracellular levels in the PFC. We also show that D1R colocalizes with CRF2 receptors in PFC nerve terminals. Intra-PFC infusion of antisauvagine-30, a CRF2 receptor antagonist, increased PFC GLU extracellular levels induced by BLA activation. Interestingly, the increase in GLU release observed in the presence of antisauvagine-30 was significantly reduced by incubation with SCH23390, a D1R antagonist. Conclusion: PFC CRF2 receptor unmasks D1R effect over glutamatergic transmission of the BLA-PFC circuit. Overall, CRF2 receptor emerges as a new modulator of BLA to PFC glutamatergic transmission, thus playing a potential role in emotional disorders. Keywords: CRF2 receptor; D1 receptor; dopaminergic transmission; glutamatergic transmission; prefrontal cortex

    Input variable selection for data-driven models of Coriolis flowmeters for two-phase flow measurement

    Get PDF
    Input variable selection is an essential step in the development of data-driven models for environmental, biological and industrial applications. Through input variable selection to eliminate the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a model. Meanwhile, through input variable selection the complexity of the model structure is simplified and the computational efficiency is improved. This paper describes the procedures of the input variable selection for the data-driven models for the measurement of liquid mass flowrate and gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced input variable selection methods, including Partial Mutual Information (PMI), Genetic Algorithm - Artificial Neural Network (GA-ANN) and tree-based Iterative Input Selection (IIS) are applied in this study. Typical data-driven models incorporating Support Vector Machine (SVM) are established individually based on the input candidates resulting from the selection methods. The validity of the selection outcomes is assessed through an output performance comparison of the SVM based data-driven models and sensitivity analysis. The validation and analysis results suggest that the input variables selected from the PMI algorithm provide more effective information for the models to measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables for the models to predict gas volume fraction

    Acebutolol in Mild to Moderate Hypertension

    No full text

    Kinetics of decomposition of tetramethyl murexide in acid solutions

    No full text

    Electrochemistry of boron compounds

    No full text

    Dynamic Control of Centrifugal Compressor Surge Using Tailored Structure,"

    No full text
    Introduction The operating range of turbomachinery compression systems is very often limited by the onset of fluid dynamic instabilities. Surge is a self-excited, essentially one-dimensional instability, which is characterized by oscillations in area-averaged mass flow and pressure rise, and is generally the most important instability in centrifugal compression systems. Surge can cause reduced performance and efficiency of the turbomachine, and, in some cases, failure due to the large unsteady aerodynamic forces on the blades To avoid surge, the compression system is generally operated away from the "surge line," the boundary between stable and unstable operation on the pressure rise versus mass flow performance map. Operating the compressor at some distance from this line, on the negatively sloped part of the compressor speedlines, can ensure stable operation. Doing this, however, may result in a performance penalty since peak performance and efficiency often occur near the surge line The goal of the research described here is to develop methods to extend the stable operating range by modifying the dynamic behavior of the compression system to suppress surge. This would allow compressor operation in previously unusable, o

    An Amphipathic Alpha-Helix in the Prodomain of Cocaine and Amphetamine Regulated Transcript Peptide Precursor Serves as Its Sorting Signal to the Regulated Secretory Pathway

    Get PDF
    <div><p>Cocaine and Amphetamine Regulated Transcript (CART) peptides are anorexigenic neuropeptides. The L34F mutation in human CART peptide precursor (proCART) has been linked to obesity (Yanik et al. Endocrinology 147: 39, 2006). Decrease in CART peptide levels in individuals carrying the L34F mutation was attributed to proCART subcellular missorting. We studied proCART features required to enter the regulated secretory pathway. The subcellular localization and the secretion mode of monomeric EGFP fused to the full-length or truncated forms of human proCART transiently transfected in PC12 cells were analyzed. Our results showed that the N-terminal 1–41 fragment of proCART was necessary and sufficient to sort proCART to the regulated secretory pathway. <i>In silico</i> modeling predicted an alpha-helix structure located between residues 24–37 of proCART. Helical wheel projection of proCART alpha-helix showed an amphipathic configuration. The L34F mutation does not modify the amphipathicity of proCART alpha-helix and consistently proCART<sub>L34F</sub> was efficiently sorted to the regulated secretory pathway. However, four additional mutations to proCART<sub>L34F</sub> that reduced its alpha-helix amphipathicity resulted in the missorting of the mutated proCART toward the constitutive secretory pathway. These findings show that an amphipathic alpha-helix is a key cis-structure for the proCART sorting mechanism. In addition, our results indicate that the association between L34F mutation and obesity is not explained by proCART missorting.</p> </div

    Thin layer chromatography of substituted 2-hydroxy-benzophenones

    No full text
    • …
    corecore