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Abstract:  
Input variable selection is an essential step in the development of data-driven models for 
environmental, biological and industrial applications. Through input variable selection to eliminate 
the irrelevant or redundant variables, a suitable subset of variables is identified as the input of a 
model. Meanwhile, through input variable selection the complexity of the model structure is 
simplified and the computational efficiency is improved. This paper describes the procedures of the 
input variable selection for the data-driven models for the measurement of liquid mass flowrate and 
gas volume fraction under two-phase flow conditions using Coriolis flowmeters. Three advanced 
input variable selection methods, including Partial Mutual Information (PMI), Genetic Algorithm - 
Artificial Neural Network (GA-ANN) and tree-based Iterative Input Selection (IIS) are applied in this 
study. Typical data-driven models incorporating Support Vector Machine (SVM) are established 
individually based on the input candidates resulting from the selection methods. The validity of the 
selection outcomes is assessed through an output performance comparison of the SVM based data-
driven models and sensitivity analysis. The validation and analysis results suggest that the input 
variables selected from the PMI algorithm provide more effective information for the models to 
measure liquid mass flowrate while the IIS algorithm provides a fewer but more effective variables 
for the models to predict gas volume fraction.  
 
Keywords: Input variable selection; Data driven model; Coriolis flowmeter; Two-phase flow 
measurement; Artificial neural network; Support Vector Machine 
 
1. Introduction 
Coriolis flowmeters are capable of measuring two-phase flows due to the recent advances in sensor 
and transmitter technologies [1]. However, the accuracy of Coriolis flowmeters for liquid flow 
measurement with entrained gas is still unsatisfactory. For single-phase flow measurement theoretical 
analysis has been conducted to assess the errors of Coriolis flowmeters in the measurement of mass 
flow rate and density [2-7]. Keita [2] assessed the effects of pressure and fluid compressibility on the 
meter readings through modelling of Coriolis flowmeters. Anklin [3] derived an equation to quantify 
the effects of compressibility and non-linear flow velocity on the measurement of compressible flow. 
Kutin et. al. [4] developed a mathematical model of a straight, slender-tube Coriolis meter to study the 
effects of axial force, added mass, damping and excitation on the measurement accuracy. Afterwards, 
they applied the weight vector theory to evaluate the effects of velocity profile on the sensitivity of 
Coriolis mass flowmeters [5, 6]. The velocity profile effects were found to depend on the 
configuration of Coriolis tubes. Enz [7] undertook experimental investigations into twin bent tubes to 
study the influence of asymmetrical and symmetrical pipe damping, added mass and increasing 
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ambient temperature of phased shifts in the case of zero mass flow. Extensive research has been 
undertaken over the past two decades to investigate the performance of Coriolis flowmeters under 
two-phase flow conditions. The compressibility effects on the readings of Coriolis flowmeters for gas-
liquid two-phase flow measurement were discussed by Gysling [8] and Rieder [9], respectively. 
Subsequently, Hemp et. al. [10] conducted more theoretical investigations into straight beam-type 
Coriolis flowmeters, aiming to quantify the errors in the measurement of fluid density and mass flow 
rate due to the compressibility of the fluid. The effects of asymmetric damping of the meter tube and 
bubble buoyancy were mentioned in [10]. Basse [11] analyzed the measurement errors with the 
combined effects of compressibility and phase decoupling. Since there were some assumptions in 
developing the mathematical models and certain important factors such as volume fraction, pressure 
loss and pipe geometry were not taken into consideration, there were significant differences between 
the theoretical analysis and experimental results. Thanks to the new generation of flow transmitters, 
experimental tests prove that the liquid mass flow errors of Coriolis flowmeters under two-phase flow 
conditions are generally reproducible [12]. In this case, data-driven models incorporating soft 
computing algorithms can be used to correct the mass flow errors and predicting gas volume fraction 
under two-phase or multi-phase flow conditions. Henry and Liu [13] used a neural network to correct 
the mass flow error of a Coriolis flowmeter installed on a horizontal two-phase flow pipeline. For the 
same purpose, another model established on fuzzy systems was put forward by Safarinejadian et. al. 
[14]. However, the input variables in the proposed models were selected by experience and may 
underestimate the performance of dada-driven models. Although certain theoretical knowledge about 
the factors affecting the performance of Coriolis flowmeters is available, parametric dependency 
between the input variables is not studied and their significance and sensitivity to the desired outputs 
are not quantified, either. Moreover, input variable selection methods which aim to extract the 
information from the available data provide a new approach to determining the inputs of data-driven 
models for two-phase or multiphase flow measurement. For these reasons, input variable selection as 
a fundamental consideration in identifying the optimal structure of a data-driven model should be 
studied systematically before modelling a Coriolis flowmeter for two-phase flow measurement.   
Input variable selection is in fact to establish the relationships within the available data and identify 
suitable predictors of the model output. In the case of artificial neural networks or other similar data-
driven statistical models, input variable selection is indispensable for developing a suitable model. 
May et. al. summarized the input variable selection methods for artificial neural networks and gave 
several key considerations in determining the most appropriate approach to input variable selection 
for a given application [15]. The input variable selection techniques can be classified into three main 
categories: wrapper, embedded and filter algorithms. The first two are model-based and the latter is 
model-free. In order to choose an appropriate approach, the first consideration is to decide whether the 
case under consideration is a linear or non-linear problem. Subsequently, the computational 
requirements in the model-based techniques and the selection accuracy should be balanced as well. 
The Partial Mutual Information (PMI) approach, as an advanced model-free variable selection 
method, is able to minimize redundancy and maximize relevance in the available data by estimating 
the maximum joint mutual information. Bowden et. al. tested PMI and SOM-GAGRNN (Self 
Organizing Map - Genetic Algorithm and General Regression Neural Network) on a number of 
synthetic data sets and real-time forecasting simulation [16, 17]. It turned out that both approaches 
were acceptable when predictive performance was the primary aim. The variables determined using 
the PMI algorithm were most robust for the validation set and the PMI scores can reveal useful 
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information about the order of importance of each significant input. May et. al. further researched on 
the partial mutual information based input variable selection for non-linear artificial neural networks 
[18]. In order to resolve the problems of underlying assumption of linearity and redundancy within the 
available data, three novel termination criteria, i.e. Tabulated critical values, Akaike Information 
Criterion (AIC) and Hampel test criterion, were proposed to improve computational efficiency and 
accuracy of the algorithm. Because the data distributions in real-world applications are often unknown 
and the assumption of Gaussian data may be inappropriate, the AIC and Hampel criteria are 
recommended for wider applicability. Galelli et. al. proposed a hybrid approach combining both 
model-free and model-based methods, namely, the tree-based Iterative Input variable Selection (IIS) 
algorithm, in 2013 [19]. In this algorithm a tree-based ranking method is used in place of the 
information-theoretic measure such as PMI to estimate the information gained from the data. Results 
indicate that IIS is capable of selecting the most significant and non-redundant inputs in different test 
conditions. Subsequently, Galelli et. al. made an inter-comparison of four input variable selection 
methods, including PMI, PCIS (Partial Correlation Input Selection), IIS and GA-ANN, through 
testing on several datasets, and evaluated the four algorithms in terms of selection accuracy, 
computational efficiency and qualitative criteria [20]. Li et. al. presented preliminary guidelines for 
the selection of most appropriate methods for obtaining the required Kernel Density Estimates 
(KDEs) in the PMI method [21]. The use of alternative bandwidth estimators can result in significant 
improvements in the PMI method for non-normally distributed data. 
 
In order to realize two-phase or multi-phase flow measurement using Coriolis flowmeters, data-driven 
models are to be established for the flowmeters to predict liquid mass flowrate and gas volume 
fraction. This paper focuses on input variable selection for the data-driven models through comparing 
different selection techniques. In this research, experimental data were obtained from a gas-water two-
phase flow test rig with liquid mass flow rate ranging from 700 kg/h to 14,500 kg/h and gas volume 
fraction between 0 and 30%. In view of the gravitational effect on two-phase flows and the 
performance of Coriolis flowmeters, separate models should be established for vertical and horizontal 
installations, respectively. For each installation of the flowmeter, two independent models are to be 
developed, one for liquid mass flowrate and the other one for gas volume fraction. For each model, 
there are a total of 12 potential input variables which are direct outputs of the Coriolis flowmeters or 
transformed internal parameters in addition to the outputs from differential-pressure (DP) transducers 
and electric impedance sensors. The variable selection process is realized through analyzing the 
underlying relationships between the variables and desired outputs based on the observational 
evidence and interpreting the selection outcomes in view of physical properties of the two-phase fluid. 
Three input variable selection methods, PMI, GA-ANN and IIS are applied for each model. SVM 
(Support Vector Machine) based data-driven models are built up with the selected input candidates 
and the validity of the selected variables is assessed by comparing the output performance of the 
models. The parametric dependence, significance and sensitivity of the input variables to the desired 
outputs are discussed in the following sections. The most suitable subset of input variables for each 
data-drive model is finally recommended.  
 
2. Input variable selection 
The model-based input variable selection approach aims to select the variable set which makes the 
model perform well through establishing and evaluating the model based on the potential variable 
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combinations. The main drawback of this approach is the high computational requirement due to a 
large number of calibration and validation processes. Moreover, the selection result depends on the 
predefined model in terms of architecture and parameters. On the contrary, the model-free approach is 
directly based on the information (interclass distance, statistical dependence, or information theory, 
etc.) between the available dataset, so the computational efficiency is not an issue. However, a trade-
off criterion should be defined to balance the significance measurement and the number of selected 
variables. In this study, three input variable selection methods, PMI, GA-ANN and IIS, are considered 
to identify input variables before modelling of Coriolis flowmeters for two-phase flow measurement.  
 
2.1 Partial Mutual Information (PMI) 
 The PMI input variable selection method was first proposed by Sharma in 2000 for the identification 
of inputs for hydrological models [20]. PMI is a model-free variable selection method, which utilizes 
a measure of the partial dependence between a potential input variable and the output, conditional on 
any inputs that have already been selected. Earlier research on evaluating the performance of PMI on 
synthetic data sets and real-world data sets shows that PMI is a promising method [18, 21].  
 
Given a dependent variable Y, the potential input variable pool x={x1, x2, … , xm} and the already 
selected variables S, the PMI value of a potential input variable xi can be formulated as: 
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where  SmY
ˆ  is the conditional expectation of Y given an observed S.  Sm

ixˆ  is the conditional 

expectation of xi given an observed S. u ={u1,u2,…,un}  and v ={v1,v2,…,vn} represent the residual 
information in dependent variable Y and potential input variable xi once the effect of the already 
selected inputs S has been taken into consideration. n is the number of observations. )(ˆ jvf , )(ˆ juf  and 

),(ˆ
jj uvf  are the estimated marginal and joint probability density functions which are realized by 

kernel density estimation.  
 
Akaike information criterion (AIC) is considered as the termination criterion of the PMI algorithm, as 
it can provide a general measure of the trade-off between information gain and the complexity 
introduced to the model by the addition of input variables. It is based on the analysis of the output 
variable residual u. Once there is no further reduction in the information contained in u, the optimal 
input variable set is reached and the selection is terminated.  
 

                                                               pu
n

nAIC
n

j

je 21log
1

2 







 



                                             (4) 

where p is the number of model parameters. u is the residual of the desired and estimated outputs and  
u can be calculated from equation (2). 
 
The search strategy is a forward selection procedure which is described as follows: 
(1) Initialize the selected input set S with null.  
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(2) Calculate the PMI value (eq.(1)) for each potential variable which is beyond S. 
(3) Find out the variable xi with the highest PMI value.  
(4) Calculate the AIC score (eq.(4)), assuming xi is included in S.  
(5) If AIC score decreases, variable xi can be added to S and go to step (2). 
     Otherwise variable xi is rejected and the selection is terminated. 
 
2.2 Genetic Algorithm - Artificial Neural Network (GA-ANN) 
GA-ANN is a kind of model-based input variable selection method. It comprises of a simple 1-hidden 
node multilayer perceptron neural network as a regression model and genetic algorithm as the 
heuristic search strategy. The potential variable subsets are generated by the genetic operations: 
selection, crossover and mutation. The suitability of the input variables is determined by assessing the 
performance of the neural network which is established based on the corresponding variables. The 
out-of-sample AIC is considered to quantify the accuracy of the neural network after k-fold cross 
validation. The termination criterion of the genetic algorithm is either the maximum number of 
evaluations or convergence of the fitness function is achieved [22]. 
 
A genetic algorithm usually includes five steps: population initialization, fitness function, selection, 
crossover and mutation. The selection procedure is as follows: 
(1) Initialise a population with a random population of chromosomes. 
(2) Each chromosome in the population is decoded into a solution. Calculate its fitness using an 
objective function. 
(3) The chromosome with best fitness is selected to generate a second generation.  
(4) Partially exchange genetic information between two parent chromosomes during crossover. 
(5) With some low probability, a portion of the new individuals have some of their chromosomes 
flipped during mutation, which is used to keep the population diverse and prevent the algorithm from 
prematurely converging onto a local minimum. 
(6) If the maximum number of evaluations or convergence of the fitness function is reached, the 
selection procedure is over. Otherwise, go to (2). 
 
2.3 Iterative Input Selection (IIS) 
The IIS method is a combination of model-free and model-based methods. It utilizes extra-trees to 
estimate the relative contribution of each candidate input. The ranking-based evaluation does not 
require any assumption on the statistical properties of the input data set (e.g. Gaussian distribution) 
and can be applied to any sort of samples. Moreover, this approach does not rely on computationally 
intensive methods (e.g. bootstrapping) to estimate the information content in the data and thus is 
generally faster and more efficient [23]. The relevance G of the variable xi in explaining the output Y 
can be evaluated by: 
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where M is the number of different trees and Ω is the number of non-terminal nodes in the tree. wj is 
the jth non-terminal node in the tth tree. k is equal to 1 if the variable xi is used to split the node wj, 
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otherwise k is 0. )(var jw  is the variance reduction associated to node wj. D  is the number of 

observations in training dataset D.  
 
The input variables are sorted by decreasing the relevance of potential variables, and thus the first 
variable should be most significant. In order to reduce miss-selection and minimize the redundancy, 
the first p variables in the ranking are further evaluated by SISO (Single Input Single Output) and 
MISO (Multiple Input Single Output) models. The termination criterion is defined as either the best 
variable obtained in the current iteration is already in the selected variable set S, or the improvement 
of the model performance reaches to tolerance İ. 
 
The search strategy is forward selection and the selection procedure is as follows: 
(1) Calculate the input ranking of the potential input variables according to the explained variance and 
pick out the p most relevant input variables. 
(2) Build SISO models for each of the first p-ranked variables. Compute the distance metric between 
Y and the model output, and then select the most relevant variable xi and add it to the selected variable 
set S. 
(3) Build a MISO model with selected variable set S and compute the distance metric between Y and 
the model output. 
(4) Evaluate the variation of the distance metric (D) between the current and previous iteration. If D is 
less than tolerance İ or a variable is selected twice, the selection is terminated. 
 
3. Experiments and results 
3.1 Experimental tests 
Experimental tests were conducted on a 1-inch bore, air-water two-phase flow test rig (see Fig. 1). 
Two independent Coriolis flowmeters were installed before the mixer to provide references for the 
individual mass flowrates of the liquid and gas phases. Due to the effect of gravity and buoyancy on 
the gas-liquid two-phase flow, bubbles distributed within the Coriolis measuring tubes are different 
between horizontal and vertical installations and hence Coriolis flowmeters perform differently. For 
this reason, two additional Coriolis flowmeters of the same type were installed in the horizontal and 
vertical test sections, respectively, on the test rig to measure the liquid mass flowrate and gas volume 
fraction. The Coriolis flowmeters under test are twin bent-tube design, as shown in Fig. 2.  Two DP 
transducers were also used to record the DP value across each Coriolis flowmeter under test. In 
addition, an electric impedance sensor was installed in the upstream of the Coriolis flowmeter on the 
horizontal test section. 
 
Two series of tests (Tests I and Tests II) were conducted over a range of liquid mass flowrates from 
700 kg/h to 14500 kg/h with gas volume fraction from 0 to 30%. The test points with variations in 
liquid mass flowrate and gas volume fraction are summarized Fig. 3. For the purpose of training a 
data-driven model, a dataset of 237 records (circular markers in Fig. 3) was collected from Tests I 
while the dataset of 24 records (triangular markers in Fig. 3) from Tests II for testing the model. Each 
dataset represents the average of all recorded values within an approximate window of 100 seconds. 
The fluid temperature during the tests was between 18°C~24°C, which varied with the ambient 
temperature in the laboratory. It was observed during the experiments that the flow pattern in the 
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horizontal pipe was mostly slug or dispersed bubbly flow whilst the flow was of bubbly and dispersed 
bubbly nature in the vertical pipe. However, it must be borne in mind that the observed flow patterns 
are different from the flow regimes within the Coriolis measuring tubes as the incoming fluid is 
separated and flows into two smaller bent tubes (Fig.2). Although the bubble distributions within the 
two tubes are unknown, the variable selection methods based on the whole experimental data will take 
into consideration the flow patterns in horizontal or vertical pipes. 

 
Fig. 1 Schematic of the two-phase flow test rig 

 

 
Fig. 2 Typical design of twin bent Coriolis measuring tubes [1] 
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Fig. 3 Experimental test points of the gas-liquid two-phase flow 

3.2 Experimental results 
The variables and their corresponding physical definitions are outlined in Table I. All input variables 
(x1-x14) are obtained through measuring or transforming the internal parameters of the two Coriolis 
flowmeters, DP transducers and the electrical impedance sensor. Variables x1-x3 are direct 
measurement outputs from Coriolis flowmeters while x4-x11 are their internal parameters. The 
measurement principle of mass flowrate ( m ) of a single-phase flow using Coriolis flowmeters is 
represented as [24, 25]  

                                              dTR tTCTCCCTeKKm ])(1[ 2
4321                                    (6) 

where KR is a calibration factor for the measurement of the mass flowrate of a single-phase flow at a 
reference temperature, KT is a material temperature dependence factor, e is a device-specific 
temperature dependence factor, and T is a relevant temperature difference.  and   indicate the 
relevant differences on circumferential stress and axial stress of a measuring tube. C1, C2, C3 and C4 
are corresponding calibration coefficients. td is the time shift between the signals from motion sensors 
A and B. 
The fluid density (ȡ) from a Coriolis flowmeter is determined by 

                                                              RER B
f
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1)1(                                                         (7) 

where AR and BR are calibration factors to measure the density of single phase flow, KE is a 
temperature dependence factor, and f is the frequency of a measuring tube. 
 
Coriolis flowmeters are capable of providing accurate measurements of mass flowrate and density of 
single-phase flow. However, the mass flowrate and density readings are erroneous under the condition 
of two-phase or multiphase flows due to the effect of additional phase on the vibration of the 
measuring tube. In this case, the erroneous mass flowrate and density are defined as apparent mass 
flowrate and observed density (i.e. x1 and x2 in Table I).  
 
x12 (DP) from the DP transducer represents the pressure difference across a Coriolis flowmeter. x13 
and x14 are from the electric impedance sensor and represent the magnitude and phase angle of the 
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impedance of the flow between two electrodes. Under two phase flow conditions, it is impossible to 
measure the liquid mass flowrate and gas volume fraction directly using each of the instruments alone. 
However, the variations of the variables in Table I reflect the changing of the desired outputs 1Y

(desired liquid mass flowrate) and 2Y (desired gas volume fraction) to some extent. Due to the 
reproducibility of the experimental tests, it is possible to establish data-driven models using the 

available experimental data to estimate liquid mass flowrate ( 1̂Y ) and gas volume fraction ( 2̂Y ). 
Because some of the variables from different sensors are independent and some are related to each 
other in physical sense, it is difficult to empirically determine which variable has more contribution to 
explain the desired outputs. It is necessary to formulate the relationship between the potential input 
variables and the desired outputs and then identify significant variables which are able to explain the 
desired outputs completely. Meanwhile, the repeated information should be eliminated to reduce the 
complexity of the model structure and improve the performance of the model. 
 

 
Table I Variables and their corresponding physical definitions 

ID Variable name and 
symbol 

Physical definition 
Source 

x1 Apparent mass flowrate 
(m) 

The mass flowrate reading from Coriolis 
flowmeters based on calibration characteristics 
for single-phase flows. 

Coriolis 
flowmeter 

x2 
Observed density (ȡ) 

The density reading from Coriolis flowmeters 
based on calibration characteristics for single- 
phase flows. 

Coriolis 
flowmeter 

x3 Process temperature (T) 
The temperature reading from Coriolis 
flowmeters 

Coriolis 
flowmeter 

x4 Sensor-A amplitude (VA) 
The voltage amplitude of signals from motion 
sensor-A. 

Coriolis 
flowmeter 

x5 Sensor-B amplitude (VB) 
The voltage amplitude of signals from motion 
sensor-B. 

Coriolis 
flowmeter 

x6 Drive level (ID) The current amplitude of the driver output. 
Coriolis 
flowmeter 

x7 Time shift (td) 
The time delay between the signals from the two 
motion sensors induced by flow. 

Coriolis 
flowmeter 

x8 Tube frequency (f) 
The oscillation frequency of the Coriolis 
measuring tube(s) inside Coriolis flowmeters. 

Coriolis 
flowmeter 

x9 Sensor balance (Bs) 
The ratio of the voltage amplitude of sensor-A 
signal to sensor-B signal. 

Coriolis 
flowmeter 

x10 Damping (K) Damping factor of Coriolis measuring tube(s) 
Coriolis 
flowmeter 

x11 Two phase indicator 
An indicator for the detection of a two-phase or 
multiphase flow [26]. 

Coriolis 
flowmeter 

x12 Difference pressure (DP) 
DP is the differential pressure across the 
Coriolis flowmeter. 

DP 
transducer 
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x13 Magnitude of Impedance 
( Z ) 

The ratio of the voltage difference amplitude to 
the current amplitude. 

Electrical 
impedance 
sensor 

x14 Phase factor of 
Impedance ( ) 

The phase difference between voltage and 
current. 

Electrical 
impedance 
sensor 

Y1 

Desired liquid mass 
flowrate 

Desired liquid mass flowrate on the test section 
is obtained from liquid reference Coriolis 
flowmeter 

Liquid 
reference 
Coriolis 
flowmeter 

Y2 Desired gas volume 
fraction 

Desired gas volume fraction on the test section 
is obtained by calculation according to liquid 
and gas reference Coriolis flowmeters 

Liquid and 
gas reference 
flowmeters 

1̂Y  Estimated liquid mass 
flowrate 

Output of data-driven models for the 
measurement of liquid mass flowrate under two-
phase flow conditions. 

Data-driven 
model 

2̂Y  Estimated Gas volume 
fraction 

Output of data-driven models for the 
measurement of gas volume fraction under two-
phase flow conditions. 

Data-driven 
model 

 
In consideration of different performances of the Coriolis flowmeter on horizontal and vertical 
installations, two separate models are to be built for each position. Model-H-L and Model-H-G 
present the models built for the Coriolis flowmeter in the horizontal section to measure liquid mass 
flowrate and gas volume fraction, respectively. Similarly, Model-V-L and Model-V-G indicate the 
models built in the vertical section to measure liquid mass flowrate and gas volume fraction, 
separately. Since apparent mass flowrate (x1) and observed density (x2) are derived directly from 
time shift (x7) and tube frequency (x8), respectively, with temperature compensation, the possibility 
of replacing x7 and x8 with x1 and x2 is considered, respectively. For this reason, x7 and x8 are 
excluded in Table II. Regarding each model, there are 12 potential input variables and one output. The 
input variables and outputs from the four models are outlined in Table II.  
 

Table II Symbols of the input variables and corresponding outputs for the four data models 
Installation Model Potential input variables Model Output 

Horizontal pipe 
H-L x1-x6, x9-x14 1̂Y  

H-G x1-x6, x9-x14 2̂Y  

Vertical pipe 
V-L x1-x6, x9-x14 1̂Y   

V-G x1-x6, x9-x14 2̂Y   

 
3.3 Implementation of input variable selection 
3.3.1 Implementation of PMI 
The PMI algorithm was implemented on the experimental dataset for each model. The variable with 
the highest PMI value is selected to the candidate input variable set for each iteration. Fig. 4 shows 
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the change of AIC score when a new variable is added. As Fig. 4 (a)-(d) shown, the AIC score has a 
decreasing trend until a new variable is selected so that the termination criterion is reached. The 
variables before the red line in Fig. 4 (a)-(d) are the final selected variables for the four models.  
 
Model-H-L and Model-V-L are applied to the Coriolis flowmeters on horizontal and vertical pipelines, 
respectively, for the measurement of liquid mass flowrate. The results of PMI selection (Fig. 4 (a) and 
(c)) show that variables x1 (apparent mass flowrate), x2 (observed density) and x12 (DP) are main 
factors for the two models to estimate the desired liquid mass flowrate. This means, although the 
Coriolis flowmeters on different orientations have different performances, the main factors affecting 
liquid mass flowrate are the same. Variable x5 (sensor-B amplitude) provides additional information 
for Model-H-L while x10 (damping) is helpful for Model-V-L. The combined effect of the variables is 
more significant than that of an individual variable on the output. The selection results demonstrate x1 
has more contribution than the other variables to the measurement of liquid mass flowrate as one 
would expect from a purely physical point of view. The difference in selection sequence between the 
models for horizontal and vertical pipes is due to the effect of installation on the performance of 
Coriolis flowmeters. 
 
Model-H-G and Model-V-G are applied for gas volume fraction prediction of Coriolis flowmeters on 
horizontal and vertical pipelines, separately. Fig. 4(b) and Fig. 4(d) show that variables x2 (observed 
density), x13 (magnitude of impedance) and x3 (process temperature) are obtained from the PMI 
selection procedures for both Model-H-G and Model-V-G. Apart from the three variables, x10 and x9 
are also beneficial to Model-H-G for fitting the desired output. As expected, variable x2 was first 
selected for Model-H-G and Model-V-G since the observed density changes significantly in relation 
to the amount of gas entrained in the liquid flow.  

 
                        (a) PMI for Model-H-L                                                (b) PMI for Model-H-G 
  

 
                       (c) PMI for Model-V-L                                                 (d) PMI for Model-V-G 

Fig. 4 Procedures of PMI input variable selection for Models H-L, H-G, V-L and V-G 
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3.3.2 Implementation of GA-ANN 
GA-ANN input variable selection was implemented on the dataset of Models H-L, H-G, V-L and V-G. 
The GA algorithm takes thousands of iterations to conduct selection, crossover and mutation before 
the AIC value is converged. The iteration process for each model is shown in Fig. 5. The out-of-
sample AIC for the four models are individually 1639.06, 958.65, 1555.46 and 911.36.  
 
The selected input variables are x1, x5, x6, x10 and x12 for Model-H-L, while x1, x5, x6, x9, x10 and x12 
for Model-V-L. It is obvious that the common variables x1 (apparent mass flowrate), x5 (sensor-B 
amplitude), x6 (drive level), x10 (damping) and x12 (DP) are important for the pre-defined ANN models 
to fit the desired liquid mass flowrate.  
 
The selected inputs variables are x2, x3, x4, x5, x11, x12, x13, x14 for Model-H-G, while x2, x3, x4, x9, x11, 
x12, x13, x14 for Model-V-G. As the GA-ANN selection results suggest, the variables x2 (observed 
density), x3 (process temperature), x4 (sensor-A amplitude), x11(two phase indicator), x12 (DP), x13 

(magnitude of impedance) and x14 (phase factor of impedance) are common important variables for 
the pre-defined models to predict gas volume fraction. 
 
The outcomes of GA-ANN include more variables than PMI. The selected subset is restricted by the 
structure of ANN and the problem of redundancy in the selected variables is more serious than PMI. 
Moreover, it cannot provide the information of significance level of the selected input variables.  
 

   
                     (a) GA-ANN for Model-H-L                                   (b) GA-ANN for Model-H-G 

     
                     (c) GA-ANN for Model-V-L                                  (d) GA-ANN for Model-V-G 

Fig. 5 Integration of GA algorithm for Models H-L, H-G, V-L and V-G 
 

3.3.3 Implementation of IIS 
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IIS algorithm was executed on the dataset of Models H-L, H-G, V-L and V-G, respectively. The 
candidate subset was incrementally built through ranking, SISO and MISO evaluation. The selection 
process and the performance of MISO are shown in Fig. 6 for each model. For Model-H-L, the 
tolerance İ is reached after x1, x4 and x9 are all included.  For Model-H-G, the selection process is 
terminated because variable x12 is selected twice. For Model-V-L, the tolerance İ is reached after x1, 
x4, x2 and x9 are selected. For Model-V-G, input variable x12 is also selected twice resulting in the 
selection procedure terminated. 
 
From the results of Model-H-L, the variables x1 (apparent mass flow), x4 (sensor-A amplitude), x9 
(sensor balance) are selected while variables x1, x4, x2 (observed density), x9 are selected for Model-
V-L. This presents the information of apparent mass flow and sensor balance are two most useful 
variables to improve the performance of MISO models.  
From the results of Model-H-G, the variables x2, x12 (DP), x3 (process temperature) were selected 
while variables x2, x1, x12 were selected for Model-V-G. The fitting results of MISO models with the 
inputs of the information of observed density and mass flowrate information (DP or apparent mass 
flowrate) are significantly improved. 
 

   
                     (a) IIS for Model-H-L                                                 (b) IIS for Model-H-G 

   
                       (c) IIS for Model-V-L                                              (d) IIS for Model-V-G 
 

Fig. 6 Results of IIS for Models H-L, H-G, V-L and V-G 
 

3.3.4 Comparison of PMI, GA-ANN and IIS methods 
The selected variables by PMI, GA-ANN and IIS methods and corresponding running time (the laptop 
processor is Intel(R) Core (TM) i5-4200U CPU @ 1.60GHz) are summarized in Table III. It is clear 
that GA-ANN algorithm takes longer time to implement the heuristic search than the other two 
methods. The running time of GA-ANN is about 10 times of IIS running time and 100 times of PMI 
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running time. In view of time efficiency, PMI algorithm is the most effective approach and IIS is in 
the second place.  
 
In terms of the number of selected input variables, GA-ANN produces more candidate variables than 
PMI and IIS. Moreover, there is much more redundant and unnecessary information in the selected 
subset. IIS generates smallest subset without such redundancy. Comparing the outcomes from IIS and 
PMI, the important information of the candidate variables from IIS are mostly included in the selected 
variables from PMI.   

 
Table III Variable selection outcomes for PMI, GA-ANN and IIS 

Model 
PMI GA-ANN IIS 

Selected 
variables 

Elapsed 
time (s) 

Selected variables 
Elapsed 
time (s) 

Selected 
variables 

Elapsed 
time (s) 

H-L x1, x5, x2, x12 11.81 x1, x5, x6, x10, x12 5281.93 x1, x4, x9 217.33 

H-G x2, x13, x3, x10, x9 13.10 
x2, x3, x4, x5, x11, 
x12, x13, x14 

2689.13 x2, x12, x3 242.92 

V-L x1, x12, x10, x2 13.14 
x1, x5, x6, x9, x10, 
x12 

4152.62 x1, x4, x2, x9 279.63 

V-G x2, x13, x3 12.63 
x2, x3, x4, x9, x11, 
x12, x13, x14 

721.12 x2, x1, x12 247.57 

 
3.4 Results and discussion 
3.4.1 Validation 
In order to compare the performance of the three variable selection methods, a typical data-driven 
model is established for each case with SVM.  SVM regression performs a linear regression in the high 
dimensional feature space using İ-insensitive loss and tends to reduce the model complexity by 
minimizing the weight vector [27]. Since an SVM model is based on the statistic learning theory and 
structural risk minimization, the output is not affected by the initial parameters and pre-defined 
structure of the model. Due to the relatively constant structure and better performance of the SVM 
model, it is applied to establish the relationship between the input variables and the output. In this 
study, the parameters for building the SVM models are optimized through 10-fold cross validation. 
The performance of the SVM model is quantified by Normalised Root-Mean-Square Error (NRMSE), 
which is defined as  

                                                        
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where iy  is the reference value of the model output, y is the mean of iy , iŷ is the model output, and 

n is the number of observations.  
 
For each model, three SVM-based models were established based on the selected variables from PMI, 
GA-ANN and IIS, respectively. Each SVM-based model was tested on the training data and test data 
to evaluate the performance of the models which was mainly affected by the input variables. The solid 
line (original error1) and dash line (original error2) in Fig. 7 (a) and (c) present the original errors of 
mass flowrate on training data and test data. After correction by SVM-based models, the error of 
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liquid mass flowrate from Coriolis flowmeters on horizontal and vertical pipes are both dramatically 
decreased. Due to the inherent limitation of generalization ability of data-driven models, the errors on 
test data are larger than those on training data. Through comparing the NRMSE values of the three 
SVM-based models, the model with the variables selected by PMI has the lowest error than the other 
two. This means the selected variables by PMI include better and more completed information to 
explain the liquid mass flowrate.  
 
As shown in Fig. 7 (b) and (d), the SVM-based models with PMI input variables does not perform 
well to predict gas volume fraction. Alternatively, IIS input variables make the model predict gas 
volume fraction with relatively lower error. This illustrates IIS provides the fundamental variables for 
the prediction of gas volume fraction.  
The performance of SVM-based models with GA-ANN input variables is not as good as the models 
based on variables from PMI and IIS. 
 
    

     
                         (a) Model-H-L                                                                       (b) Model-H-G         

       
                             (c) Model-V-L                                                              (d) Model-V-G 
Fig. 7 Performance of RBF neural networks with input variables selected for PMI, GA-ANN and IIS 

 
3.4.2 Sensitivity analysis 
Sensitivity analysis is used to evaluate how sensitive the model output is to the changes in the value of 
input variables and also identify which input variables are important in contributing to the prediction 
of the output variables [28, 29]. In performing the sensitivity analysis, each variable of the model’s 
inputs is increased by 5% in turn. The aim is to assess the effect of small changes in each input on the 
model output. The percentage change in the output as a result of the increase in each of the inputs is 
the sensitivity, which is defined as: 
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where, iẑ  is the model output after small changes added to the input variables, iŷ  is the model 

output with no changed input variables and n is the number of observations. 
 
Sensitivity analysis was conducted on the SVM-based models with PMI input variables for liquid 
mass flowrate measurement, and the SVM-based models based on IIS input variables for gas volume 
fraction prediction. The sensitivity of each variable is plotted in Fig. 8. From Fig. 8 (a) and (c), it is 
clear that variables x1 (apparent mass flowrate) and x2 (observed density) have the higher sensitivity 
to the model output than the other variables. They have more relative influence on the measurement of 
liquid mass flowrate. Fig. 8 (b) and (d) show that small changes in variable x2 (observed density) can 
result in more significant variations on the model output. Moreover, temperature fluctuation has more 
effect on the measurement of gas volume fraction than liquid mass flowrate.  
         

                
     (a)   Sensitivity of input variables for Model-H-L   (b) Sensitivity of input variables for Model-H-G 
        

  
     (c)  Sensitivity of input variables for Model-V-L    (d) Sensitivity of input variables for Model-V-G 

Fig. 8 Sensitivity of input variables for the four models 
 
4. Conclusions 
Input variable selection as one of the most important steps in the development of data driven models, 
determines the quality and quantity of the information used in the modelling process. In order to 
establish a functional and optimal model for Coriolis flowmeters under two-phase flow conditions, 
input variable selection and validation have been conducted in this study. Moreover, parametric 
dependence, significance and sensitivity of the input variables to the desired outputs have been 
investigated. In view of the different installation conditions of the Coriolis flowmeters, four 
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independent models, H-L, H-G, V-L and V-G, have been established and evaluated to obtain the 
liquid mass flowrate and gas volume fraction. Three input variable selection approaches, including 
PMI, GA-ANN and IIS, have been applied to determine the most suitable variable subset for each 
model. The validity of the selected variables has been assessed on SVM-based models through a 
comparison of the NRMSE and sensitivity analysis. The following conclusions can be drawn from the 
results: 
 
(1) In terms of time efficiency the PMI and IIS algorithms have outperformed the GA-ANN algorithm. 
The genetic operations and repeated model building and evaluation in the GA-ANN algorithm are 
achieved at the cost of long computation time. The IIS is semi-model based algorithm and hence takes 
more running time than the PMI. 
 
(2) In terms of selection accuracy all the subsets selected from PMI, GA-ANN and IIS are able to 
explain the model output and have reduced the original errors of mass flowrate. Particularly, PMI 
provides more effective variables for the measurement of liquid mass flowrate than the other two 
approaches. For the prediction of gas volume fraction, the IIS has selected the most important 
information and thus generate a better performing model. The variables obtained from the GA-ANN 
contain some redundant information, while PMI and IIS can effectively avoid the redundancy to some 
extent and produce valid input variables for the models. 
 
(3) With regard to the experimental data obtained in this study, the most important variable set for the 
measurement of liquid mass flowrate includes observed density, apparent mass flowrate, DP and 
damping while those for the prediction of gas volume fraction include observed density, apparent 
mass flowrate and DP.  
 
The validation and analysis results suggest that the input variables selected from the PMI algorithm 
provide more effective information to measure the liquid mass flowrate while the IIS algorithm 
provides a fewer but more effective variables to predict the gas volume fraction. Although variable 
selection approaches can provide some valuable information to determine the input variables of a 
data-driven model, the accuracy of the methods also depend on the observational dataset, such as data 
size and their distributions. A dataset with less data or low-quality may result in underestimation or 
overestimation of the candidate variables for a data-driven model.  Consequently, in order to ensure 
the selection accuracy with limited size of a dataset, it is necessary to determine the input subset using 
variable selection methods incorporating physical interpretation of the variables. The variable 
selection results in this paper have provided useful evidence for building suitable data-driven models 
of Coriolis flowmeters for two-phase flow measurement. It is envisioned that the results from the 
comparative studies of the three selection methods are applicable to other industrial measurement 
processes in relation to data-driven models. The performance of the developed data-driven models for 
flow conditions that are outside the experimental range will be studied and reported in the near future. 
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